• 제목/요약/키워드: Al layer

검색결과 2,810건 처리시간 0.031초

원자층 증착법을 이용한 ZnO:Al 박막의 특성 (Characteristics of Atomic Layer-Controlled ZnO:Al Films by Atomic Layer Deposition)

  • 오병윤;백성호;김재현;이희준;강영구;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.40-40
    • /
    • 2010
  • Structural, electrical, and optical properties of atomic layer-controlled AI-doped ZnO (ZnO:Al) films grown on glass by atomic layer deposition (ALD) were characterized with various $Al_2O_3$ film contents for use as transparent electrodes. Unlike films made using sputtering methods, the diffraction peak position of the films grown by ALD based on alternate self-limiting surface chemical reactions moved progressively to a wider angle (red shift) with increasing $Al_2O_3$ film content, which seems to be evidence of Zn substitution in the film by layer-by-layer growth. By adjusting the $Al_2O_3$ film content, the electrical resistivity of ZnO:Al film with the $Al_2O_3$ film content of 2.96% reached the lowest electrical resistivity of $9.80{\times}10^{-4}\Omega{\cdot}cm$, in which the carrier mobility, carrier concentration, and optical transmittance were $11.20\;cm^2V^{-1}s^{-1}$, $5.69{\times}10^{20}\;cm^{-3}$, and 94.23%, respectively. Moreover, the estimated figure of merit value for the transparent conductive oxide applications from our best sample was $7.7\;m{\Omega}^{-1}$.

  • PDF

Improved Efficiency by Insertion of TiO2 Interfacial Layer in the Bilayer Solar Cells

  • Xie, Lin;Yoon, Soyeon;Kim, Kyungkon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.432.1-432.1
    • /
    • 2016
  • We demonstrated that the power conversion efficiency (PCE) of bilayer solar cell was significantly enhanced by inserting interfacial layer between the organic bilayer film and the Al electrode. Moreover, the water contact angle shows that the bilayer solar cells suffer from the undesirable surface component which limits the charge transport to the Al electrode. The AFM measurement has revealed that the pre- and post-thermal annealing treatments results in different morphologies of the interfacial layer which is critical for the higher PCE of the bilayer solar cells. Furthermore we have investigated the electrical properties of the bilayer solar cells and obtained insights into the detailed device mechanisms. The transient photovoltage measurements suggests that the significantly enhanced Voc is caused by reducing the recombination at the interface between the organic films and the Al electrode. By inserting the TiO2 layer between the bilayer film and Al electrode, the open circuit voltage (Voc) was increased from 0.37 to 0.66V. Consequently, the power conversion efficiency (PCE) of bilayer solar cells was significantly enhanced from 1.23% to 3.71%. As the results, the TiO2 interfacial layer can be used to form an ohmic contact layer, serveing as a blocking layer to prevent the penetration of the Al, and to reduce the recombination at the interface.

  • PDF

ITO/Buffer layer/TPD/$Alq_3$/Al 구조의 유기 발광 소자에서 온도 변화에 따른 전기적 특성 연구 (Temperature-dependent Electrical Properties in organic light-emitting diodes of ITO/Buffer layer/TPD/$Alq_3$/Al structure)

  • 정동회;김상걸;오현석;홍진웅;이준웅;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.534-537
    • /
    • 2002
  • We have studied conduction mechanism that is interpreted in terms of space charge limited current (SCLC) region and tunneling region. The OLEDs are based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole transport, tris (8- hydroxyquinolinoline) aluminum(III) $(Alq_3)$ as an electron injection and transport and emitting later, copper phthalocyanine (CuPc) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and poly(vinylcarbazole) (PVK) as a buffer layer respectively. Al was used as cathode. We manufactured reference structure that has in ITO/TPD/$Alq_3$/Al. Buffer layer effects were compared to reference structure. And we have analyzed out luminance efficiency-voltage characteristics in ITO/Buffer layer/TPD/$Alq_3$/Al with buffer-layer materials.

  • PDF

저온 연소합성 후 확산 열처리한 $Ni_{3}Al$ 금속간화합물 코팅층의 미끄럼 마모거동 (Analysis of Wear Properties for $Ni_{3}Al$ Layer coated on Ferrous Materials by Diffusion Treatment after Combustion Synthesis at low Temperature)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.7-12
    • /
    • 2009
  • Coating brittle intermetallic compounds on metal can enlarge the range of their use. It is found that intermetallic compound coating layers made by only combustion synthesis in an electric furnace have porous multi-phase structures containing several intermediate phases, even though the coating layers show good wear resistance. In this study, dense $Ni_{3}Al$ single phase layer corresponding to the initial composition of the mixed powder is coated on two different ferrous materials by the diffusing treatment after combustion synthesis. After- ward, sliding wear behaviors of the coating layer are evaluated in comparison with that of the coating layer with porous multi-phase structure made by only combustion synthesis. As a result, the wear properties of the coating layer composed of dense $Ni_{3}Al$ single phase are considerably improved at the range of low sliding speed com- pared with that of the coating layer with porous multi-phase structure, particularly in the running-in wear region. This is attributed to the fact that wear of the coating layer is progressed by shearing as a sequence of adhesion, not by occurring of pitting on the worn surface due to having dense structure without pores.

결정질 실리콘 태양전지의 Al2O3/SiNX 패시베이션 특성 분석 (The Properties of Passivation Films on Al2O3/SiNX Stack Layer in Crystalline Silicon Solar Cells)

  • 현지연;송인설;김재은;배수현;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제5권2호
    • /
    • pp.63-67
    • /
    • 2017
  • Aluminum oxide ($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surface. The quality of passivation layer is important for high-efficiency silicon solar cell. double-layer structures have many advantages over single-layer materials. $Al_2O_3/SiN_X$ passivation stacks have been widely adopted for high- efficiency silicon solar cells. The first layer, $Al_2O_3$, passivates the surface, while $SiN_X$ acts as a hydrogen source that saturates silicon dangling bonds during annealing treatment. We explored the properties on passivation film of $Al_2O_3/SiN_X$ stack layer with changing the conditions. For the post annealing temperature, it was found that $500^{\circ}C$ is the most suitable temperature to improvement surface passivation.

실리콘 기판위에 금속 완충층을 이용한 GaN 성장과 특성분석 (Effect of metal buffer layers on the growth of GaN on Si substrates)

  • 이준형;유연수;안형수;유영문;양민
    • 한국결정성장학회지
    • /
    • 제23권4호
    • /
    • pp.161-166
    • /
    • 2013
  • 실리콘 기판 위에 GaN를 성장하기 위해서 AlN 완충층을 사용해 왔다. 그러나 AlN은 아직까지 high doping이 쉽지 않기 때문에, 이로 인해 AlN를 전자소자나 광소자 제작을 위한 완충층으로 이용하는 경우 직렬 저항의 증가라는 문제가 발생할 수 있다. 본 연구에서는 이러한 문제점을 개선하기 위해 AlN 완충층 대신에 금속 완충층을 사용하여 실리콘 기판 위에 GaN 박막 성장실험을 수행하였다. Al, Ti, Cr 그리고 Au 등을 금속 완충층으로 사용하여 실리콘 기판 위에 GaN 층을 성장하였다. 성장된 GaN 박막의 표면 특성을 분석하기 위해 광학현미경과 SEM을 사용하였고, 결정성과 광학적 특성을 평가하기 위하여 PL과 XRD 분석을 실시하였으며 AlN 완충층을 사용한 경우와 금속 완충층을 사용한 경우의 저항 차이를 확인하기 위하여 전류-전압 특성을 측정하였다.

Al-9Si-0.3Mg 주조용 합금에서 Sludge 형성이 금형소착 반응층 두께에 미치는 영향 (Effect of Sludge Formation on the Thickness of Die Soldering Reaction Layer in Al-9Si-0.3Mg Casting Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제30권2호
    • /
    • pp.76-82
    • /
    • 2010
  • Effect of reaction time and sludge formation on the thickness of die soldering reaction layer has been studied in Al-9Si-0.3Mg casting alloy. Ternary ${\alpha}_{bcc}-Al_8Fe_2Si$ and ${\alpha}_{hcp}-Al_8Fe_2Si$ intermetallic compounds formed at the interface of SKD61 tool steel by interaction diffusion of Al, Fe and Si atoms after 0.5hr and 6hr immersion time, respectively. Binary ${\eta}-Fe_2Al_5$ additionally formed at the interface of SKD61 tool steel after 10hr immersion time. Thickness of soldering reaction layer in die surface increased as immersion time increased from 0.5hr to 24hr. Sludge formation was ascertained in the samples which were immersed in the melts more than 10hr. Reaction of die soldering after sludge formation was more accelerated than that of before sludge formation due to a decrease in Fe content, followed by higher diffusion rate of Al in the melt by sludge formation.

TiAl-W-Zr 합금에 생성된 고온산화막 분석 (Characterization of Oxide Scales Formed on TiAl-W-Zr Alloys)

  • 우성욱;이동복
    • 한국재료학회지
    • /
    • 제14권6호
    • /
    • pp.394-398
    • /
    • 2004
  • A Ti47Al1.7W-3.7Zr alloy was oxidized between $900^{\circ}C$ and $1050^{\circ}C$, and the oxide scales formed were studied. The oxide scales consisted primarily of an outer$TiO_2$ layer, an intermediate $Al_2$$O_3$-rich layer, and an inner mixed ($TiO _2$ + $Al_2$$O_3$) layer. Besides $TiO_2$ and $Al_2$$O_3$, oxidation led to the formation of some $Ti_2$AlN and TiN. Both W and Zr were preferentially segregated below the intermediate $Al_2$$O_3$-rich layer. Tungsten in the oxide scale was present as $WO_3$ and ${Ti}_{x}$$W_{1-x}$, whereas zirconium as monoclic-$ZrO_2$ and tetragonal-$ZrO_2$.

펄스 도금법을 이용한 STS 316L 스테인리스강 상의 저온 염욕 알루미늄 코팅에 관한 연구 (Study of the Al-coating on the STS 316L Stainless Steel by Pulse Plating in the Molten Salts at Room Temperature)

  • 정세진;조계현
    • 한국표면공학회지
    • /
    • 제35권1호
    • /
    • pp.17-32
    • /
    • 2002
  • Electroplating methods by molten salts and non-aqueous melts were employed for aluminium coating on STS 316L stainless steel. After coated with Ni or non-coated surface on stainless steel, Al pulse plating was carried out in two different types of electrolytes at room temperature. The Al layer from $AlCl_3$-TMPAC melts could not obtain appreciable thickness for engineering application due to chemical reactions between deposits and moisture of air. However, The Al coating by pulse plating in the Ethylbenzene-Toluene-$AlBr_3$ systems was found to be solid coating layer with a few $\mu\textrm{m}$ scale. The conductivity of Ethylbenzene-Toluene-$AlBr_3$ electrolyte was as functions of time and agitation. By seven days exposure after mixing of the electrolyte, Al-deposited layer shows uniform and near by pore-free with high current density (higher than 30mA/$\textrm{cm}^2$). The roughness and imperfection of coating layer were decreased with a increasing agitation speed. It was found that the optimum condition for the Al pulse plating on the 316L stainless steel was a 400mA peak current, duty cycle, $t_{on}$ $t_{ off}$=3ms/1ms, and a current density of 30mA/$\textrm{cm}^2$.

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.