• 제목/요약/키워드: Al foam

검색결과 114건 처리시간 0.026초

P/M법과 유도가열 공정변수가 6061 알루미늄 합금의 미세기공과 기계적 성질에 미치는 영향 (Effect of Process Parameters of P/M and Induction Heating on the Cell Morphology and Mechanical Properties of 6061 Aluminum Alloy)

  • 강충길;윤성원
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.222-229
    • /
    • 2003
  • The purpose of this study is to evaluate the mechanical properties of 6061 Al foams, which were fabricated by P/M and multi-step induction heating method, and to build the database, which is needed for computer aided modeling or foam components design. Aluminium foams, consisting of solid aluminium and large quantities of porosities, is widely used in automotive, aerospace, naval as well as functional applications because of its high stiffness at very low density, high impact energy absorption, heat and fire resistance, and greater thermal stability than any organic material. In this study, 6061 Al foams were fabricated for variation of fraction of porosities (%) according to porosities (%)-final heating temperature ( $T_{a3}$) curves. Mechanical properties such as compressive strength, energy absorption capacity, and efficiency were investigated to evaluate the feasibility of foams as crash energy absorbing components. Moreover, effect of the surface skin thickness on plateau stress and strain sensitivity of the 6061 Al foams with low porosities (%) were studied.d.

Heat Transfer Characteristics of Aluminium and FeCrAlY Foam

  • Jin, Meihua;Kim, Pil-Hwan;Lee, Hae-Jong;Jeong, Hyo-Min;Chung, Han-Shik
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.395-401
    • /
    • 2008
  • Since metallic foam will increase the performance of heat exchanger, it have caused many researcher's attention recently. Our research base on the model that metallic foams applied to heat exchanger. In this case, there is three kind of heat transfer mechanisms, heat conduction in fibers, heat transfer by conduction in fluid phase, and internal heat change between solid and fluid phases. In this paper we study both the hydraulic and thermal aspect performance. Pressure drop along air flow direction will be presented. As thermal aspect, we first discuss the acceptance of applying thermal equilibrium among the two phases. then to calculate the dimensionless temperature profile, the heat transfer coefficient and Nu number in 14 metallic foams(7 Aluminium foams, 7 FeCrAlY foams). All these discussion is based on the same velocity u=2 m/s.

  • PDF

Al-Si계 소실모형주조합금의 미세조직 및 인장성질에 미치는 주형재료의 영향 (Effect of Mold Materials on the Microstructure and Tensile Properties of Al-Si based Lost Foam Casting Alloy)

  • 김정민;이강래;최경환
    • 한국주조공학회지
    • /
    • 제39권5호
    • /
    • pp.87-93
    • /
    • 2019
  • The effects of mold materials on the microstructure and tensile properties were investigated to develop a mass production technique of aluminum alloy parts with excellent mechanical properties using a lost foam casting method. The microstructures of the plate-shaped cast alloy showed a tendency to be finer in proportion to the thickness of the plate, and a remarkably fine structure was obtained by applying a steel chill or a ball as a mold material compared to general sand. When a steel ball was used, it was observed that the larger the ball, the finer the cast structure and the better the tensile properties. The microstructure and tensile properties of the cast parts with complex shapes were greatly affected by the gating system, but the positive effects of the steel chill and the steel ball as a mold material were clear.

실리카라이트 폼에 담지된 MFI 제올라이트 촉매의 제조와 n-옥탄 분해반응에서 이들의 촉매 성질 (Preparation of MFI Zeolite Catalyst Supported on Silicalite Foam and Its Catalytic Property in the Cracking of n-Octane)

  • 정재식;최동배;송경근;하광;송요순;서곤
    • Korean Chemical Engineering Research
    • /
    • 제43권4호
    • /
    • pp.452-457
    • /
    • 2005
  • 실리카라이트 폼에 $0.2{\mu}m$ 정도의 가는 MFI 제올라이트 입자를 담지하여 만든 폼(foam) 촉매에서 n-옥탄의 분해반응을 조사하였으며, 생성물 분포에 Delplot 기법을 적용하여 반응기구를 고찰하였다. 담지된 MFI 제올라이트의 Si/Al 몰비는 25로 추정되며, 담지량은 실리카라이트 폼의 25 wt%이었다. 겉보기 밀도는 $0.11g{\cdot}cm^{-3}$로 낮아 촉매 충전량을 0.02 g에서부터 0.5 g까지 바꿀 수 있어서 압력손실 없이 반응물과 생성물의 체류시간을 폭 넓게 조절하였다. 촉매 충전량이 많아지면 n-옥탄의 전환율과 올레핀 수율이 높아졌다. 촉매를 조금 사용하였을 때 생성물 분포는 단순하여 양성자 분해기구로 설명할 수 있었다. 촉매 사용량이 많아지면 분해 생성물의 추가 반응이 진행되어 반응성이 낮은 올레핀과 파라핀의 함량이 많아지며 생성물 분포가 복잡해졌다.

소실모형 주조시 알루미늄 합금 용탕의 수소 용해에 관한 연구 (Hydrogen Gas Pick-Up of Al-alloy Melt During Lost Foam Casting)

  • 신승렬;최현진;이경환;이진형
    • 한국주조공학회지
    • /
    • 제22권4호
    • /
    • pp.167-173
    • /
    • 2002
  • The hydrogen gas pick-up problem that can occur during Lost Foam Casting was investigated by reduced pressure test and practical Lost Foam Casting. The proper test pressure of reduced pressure test was determined by experiments not to use polystyrene and gas contents of the melt were calculated from density measurement results. The results showed that the hydrogen pick-up increased with the increased amount of polystyrene that was replaced by melt. The hydrogen pick-up was larger in the case of no degassed melt than that of degassed melt. So the hydrogen pick-up depended on the initial hydrogen content of the melt and the contact time of the melt with the decomposed gas phase. The mold evacuation decreased the hydrogen pick-up and increased the flow length of melt during Lost Foam Casting. And the error of calculated hydrogen pick-up was calculated by numerical method.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

감광유리를 이용한 MEMS 촉매 연소기의 제작 및 성능 평가 (Fabrication and Performance Test of MEMS Catalytic Combustors Using Photosensitive Glass Wafer)

  • 진정근;권세진
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.237-242
    • /
    • 2009
  • MEMS catalytic combustors were fabricated to use in micro-power sources as a heat source. The combustor was fabricated by photolithography and anisotropic wet etching of photosensitive glass wafers. Two different catalyst loading methods were used to complete the fabrication of the combustors. For thin film type, the $Al_2O_3$ was washcoated on the surface of the combustion chamber as a catalyst support, and for packed-bed type, ceramic foam was inserted after Pt was coated. The volume of the combustors was 1.8 $cm^3$ and 16W of heat was generated using the fabricated combustors with hydrogen. The energy density of combustor was about 8.9 W/$cm^3$.

Al-Si-Ca 합금 폼의 압축 피로 거동 (Compression-Compression Fatigue Behavior of Al-Si-Ca alloy Foams)

  • 이창훈;하산;김엄기;정길도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.190-195
    • /
    • 2004
  • The compression-compression fatigue properties of the closed cell Al-Si-Ca alloy foams have been studied. The monotonic and cyclic compressive properties were compared with each other and the fatigue stress-life (S-N) curves were presented. In compression-compression fatigue, the crushing was found to initiate in a single band which broadens gradually with additional fatigue cycles. Progressive shortening of the specimen took place due to a combination of low cycle fatigue failure and cyclic ratcheting which is in accordance with the findings of previous researchers [1-3]. Young's modulus of the foam was found to decrease with the increasing strain in case of fatigue test however in case of monotonic compression test the value of Young's modulus increased with the strain (number of cycles). The endurance limit on the basis of $10^{7}$ cycles obtained by extrapolating the experimental results were 0.98 MPa and 1.70 MPa for load ratios 0.1 and 0.5 respectively which are 34 % and 59 % of the plateau stress.

  • PDF

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응 (Solar CO2-Reforming of Methane Using a Double-Layer Absorber)

  • 김동연;이진규;이주한;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.267-273
    • /
    • 2012
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber-the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam-was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF