• Title/Summary/Keyword: Al automotive piston

Search Result 7, Processing Time 0.018 seconds

A Study on Manufacture of Aluminum Automotive Piston by Thixoforging (반용융 단조 공정에 의한 자동차용 알루미늄 피스톤 제조에 관한 연구)

  • Choi, Jung-Il;Kim, Jae-Hun;Park, Joon-Hong;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.136-144
    • /
    • 2006
  • Aluminum engine piston is manufactured by thixoforging according to forming variables. It is very important to find effects of forming variables on final products in thixoferging. In order to find the effects, however, many researchers and industrial technicians have depended upon too many types of experiments. In this study, the process parameters which have influences on thixofurging process of aluminum automotive engine piston are found by a statistical method and the correlation equations between the process parameters and quality of product are approximated through the surface response analysis. Forming variables such as initial solid fraction, die temperature, and compression holding time are considered fur manufacturing aluminum engine piston by thixofurging. Hardness and microstructure are inspected so that optimal forming condition is found by the statistical approach.

THE STATE OF THE ART OF THE INTERNAL PLASMA SPRAYING ON CYLINDER BORE IN AlSi CAST ALLOYS

  • Barbezat, G.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.47-52
    • /
    • 2001
  • For the wear protection of cylinder bore in aluminum cast material the internal plasma spraying technology offers a new economical solution. The size and the weight of the engine blocks significantly can be decreased in comparison with the traditional cast iron sleeves. The coefficient of friction between piston ring and cylinder wall sensitively can be reduced and the wear resistance increased from several factors. The paper gives an overview of the technology from the AlSi cast alloys for engine block to the non destructive testing technology used after the machining by diamond honing. The actual results in engines of different types also will be shown. The economical advantages of the plasma spraying (or the internal coating in cylinder bore also will be discussed in comparison with the different alternatives of technology. The aspect of the market introduction also will be discussed in this paper.

  • PDF

Manufacture and Mechanical Properties of $ABO_w/AC4CH$ Composite Material ($ABO_w/AC4CH$복합재료의 제조 및 기계적 특성)

  • 허선철;박원조;허정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.188-194
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potential for demanding mechanical applications including defense, aerospace, and automotive industries. Especially, metal matrix composites, which are reinforced with aluminum borate whisker, have been used for the part of piston head in automobile because of good specific strength and wear resistance. Aluminum alloy-based metal matrix composites with whisker reinforcements have been produced using squeeze casting method, which is kind of an infiltration method. In this study, AC4CH-based metal matrix composites with $Al_{18}B$_4$O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated mechanical properties of matrix and MMC composite were evaluated.

  • PDF

Fatigue Strength Characteristic of Metal Matrix Composite Material in $9Al_2\;.\;2B_2O_4$/ AC4CH ($9Al_2\;.\;2B_2O_4$/ AC4CH 금속기 복합재료의 피로강도 특성)

  • Park, Won-Jo;Lee, Kwang-Young;Huh, Sun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1583-1589
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potentials for demanding mechanical applications including defense, aerospace, and automotive industries. Especially metal matrix composites, which are reinforced with aluminum borate whisker, have been used leer the part of piston head in automobile because of good specific strength and wear resistance. In this study, AC4CH-based metal matrix composites with $Al_{18}$B$_{4}$ $O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated fatigue life property of matrix and MMC composite and investigated fracture mechanism.m.

Mechanical Property and Fatigue Bahavior of $Al/{Al_2}{O_3}$ Metal Matrix Composite ($Al/{Al_2}{O_3}$금속복합재료의 기계적 성질과 피로거동)

  • Song, Jeong-Il;LIm, Hong-Jun;Han, Gyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.753-764
    • /
    • 1996
  • The metal matrix composites(MMC) are currently receiving a great deal of attention. These composites possess exellent mechanical and physical properties such as modulus, strength, wear resistance and thermal stability, which make them very attractive for use in automotive piston. In this study, $Al/{Al_2}{O_3}$(15%) composites are fabricated by the squeeze casting method. Mechanical properties such as tensile strength and ductility are performed at room and elevated temperature($250^{\circ}C$ and $350^{\circ}C$), respectively. Through thermomechanical analyser, thermal expansion coefficient of $Al/{Al_2}{O_3}$ composites are conducted for ranging from room temperature to ($400^{\circ}C$.And bending fatigue tests are also performed by the rotary bending machine at room temperature.The tensile strength and elastic modulus have been improved up to 38% and 35% by the addition of the reinforcements, respectively. Thermal expansion coefficients of MMCs which is located normal and parralel to the applied pressure are showed slightly different less than 10%. Fatigue strengh of the composite was improved by about 20% compared with that of unreinforced Al alloy. The results of this study will be used to understand the basic fracture behavior of MMCs and eventually to expand the applocation of MMCs as a machine parts undertaken various loadings.

A Study of the FEM Forming Analysis of the Al Power Forging Piston (유한요소해석을 이용한 알루미늄분말단조 피스톤 성형해석에 관한 연구)

  • Kim, Ho-Yoon;Park, Chul-Woo;Kim, Hyun-Il;Park, Kyung-Seo;Kim, Young-Ho;Joe, Ho-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1543-1548
    • /
    • 2010
  • Powder metallurgy processes are used to form Net-Shape products and have been widely used in the production of automobile parts to improve its manufacture productivity. Powder-forging technology is being developed rapidly because of its economic merits and because of the possibility of reducing the weight of automobile parts by replacing steel parts with aluminum ones, in particular while manufacturing automotive parts. In the powder-forging process, the products manufactured by powder metallurgy are forged in order to remove any pores inside them. Powderforging technology can help expand the applications of powder metallurgy; this is possible because powder-forging technology enables the minimization of flashes, reduction of the number of stages, and possible grain refinement. At present, powder forging is widely used for manufacturing primary mechanical parts as in combination with the technology of powder forging of aluminum alloy pistons.

Analysis of Oil Performance by Different Type of Engine Oil In the Field (필드조건, 엔진오일의 종류에 따른 오일성능 분석)

  • Kim, Young Whan;Song, Jun Hee;Kim, Han Joo
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.131-136
    • /
    • 2017
  • Automobile engine oil is the most important lubricant for operating as the engine is started. Recently, manufacturers of the automotive industry and lubricants are considerably improving the quality of oil with additive to extend change cycle period. Most customers are recommended genuine oil among different types from shop expert. Through this report we suggest another reference point for consumer to pick highly efficient lubricant. This report is investigated oil compounds to compare with 6 different automotive considering actual running condition for 7 months. we conducted experiment from physical and chemical perspectives. In the field, through various experiments oil compounds between mineral oil and synthetic oil are largely distinguished in oxidation, viscosity, fluid and TBN. These are influenced by engine part wear as piston, bearing etc. Comparing various investigation with different oil the performance of synthetic oil is shown better condition in flash point, oxidation stability and also found less in change pollutant iron, Al compounds. Additives of oil show clear difference Ca level in detergent-dispersant both mineral oil and synthetic oil. And Zn in extreme pressure additives and P in Lubricity improver make no difference to both.