• Title/Summary/Keyword: Al Alloy

Search Result 2,886, Processing Time 0.027 seconds

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

A Study on the fracture behavior of surface hardening treated aluminum alloy under the high velocity impact (고속충격을 받는 표면처리된 알루미늄 합금의 거동에 관한 연구)

  • 손세원;김희재;황도연;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.784-789
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and the resistance to penetration during ballistic impact of cold-rolled Al 5052 H34 alloy laminates, anodized Al 5052 H34 alloy laminates, and Al 5052 H34 alloy after cold-rolling, ballistic testing was conducted. In general, superior armor material is brittle materials which have a high hardness. Ballistic resistance of these materials was measured by protection ballistic limit(V50), a statical velocity with 50% probability for incomplete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed respectfully, resulting from V50 test and Projectile Through Plate(PTP) test at velocities greater than V50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V50 tests with 0$^{\circ}$obliquity at room temperature were also conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of Al 5052 H34 alloy laminates compared to those of cold-rolled Al 5052 H34 alloy laminates and anodized Al 5052 H34 alloy laminates anodized Al 5052 H34 alloy after cold-rolling.

  • PDF

Effects of Mg and Si on Microstructure and Mechanical Properties of Al-Mg Die Casting Alloy (Al-Mg 계 다이캐스팅 합금의 미세조직 및 기계적 성질에 미치는 Mg 및 Si의 영향)

  • Cho, Jae-Ik;Kim, Cheol-Woo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.5
    • /
    • pp.219-224
    • /
    • 2012
  • The effects of Mg and Si contents on the microstructure and mechanical properties in Al-Mg alloy (ALDC6) were investigated. The results showed that phase fraction and size of $Mg_2Si$ and $Al_{15}(Fe,Mn)_3Si_2$ phase in the microstructure of Al-Mg alloy were increased as the Mg and Si contents were raised from 2.5 to 3.5 wt%. With Si content of 1.5 wt%, freezing range of the alloy was significantly reduced and solidification became more complex during the final stage of solidification. While there was no significant influence of Mg contents on mechanical properties, Si contents up to 1.5 wt%, strongly affected the mechanical properties. Especially elongation was reduced by about a half with more than 1.0 wt%Si in the alloy. The bending and impact strength were decreased with increased amount of Si in the alloy, as well. The lowered mechanical properties are because of the growth of particle shaped coarse $Mg_2Si$ phase and precipitation of the needle like $\beta$-AlFeSi in the microstructure at the last region to solidify due to presence of excess amount of Si in the alloy.

RRA Treatment of Semi-Solid Al-Zn-Mg-Cu Al Alloy Fabricated by Cooling Plate (냉각판으로 제조된 Al-Zn-Mg-Cu계 반응고 알루미늄 합금의 RRA 처리)

  • Kim, Dae-Hwan;Shim, Sung-Yong;Kim, Young-Hwa;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.265-269
    • /
    • 2009
  • The optimum RRA heat treating conditions and SCC (stress corrosion cracking) resistance of semi-solid Al-Zn-Mg-Cu alloy fabricated by inclined cooling plate were compared with those of conventional mould cast alloys. The non-stirring method characterized by using a cooling plate can effectively eliminate dendritic structure and form a fine globular semisolid microstructure in as-cast Al-Zn-Mg-Cu alloy and the SCC resistance of semi-solid Al-Zn-Mg-Cu alloy was higher than that of conventional mold cast alloy. Also, after retrogressed treatment at RRA heat treatment of semi-solid Al-Zn-Mg-Cu alloy, retrogressed treatment time has increased more than 10 minutes at $180^{\circ}C$ to recovery the T6 heat treatment strength.

Influences of Precipitation of Secondary Phase by Heat Treatment on Thermal Properties of Al-4.5%Cu Alloy (열처리에 따른 제2상 석출이 Al-4.5%Cu 합금의 열 물성에 미치는 영향)

  • Choi, Se-Weon
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.435-440
    • /
    • 2020
  • The relationship between the precipitation of secondary phase and the thermal properties of Al-4.5%Cu alloy (in wt.%) after various heat treatments has been studied. Solid solution treatment of alloy was performed at 808 K for 6 hours, followed by warm water quenching; then, the samples were aged in air at 473 K for different times. The thermal diffusivity of the Al-4.5%Cu alloy changed with the heat treatment conditions of the alloy at temperatures below 523 K. The as-quenched specimen had the lowest thermal diffusivity, and as the artificial aging time increased, the thermal diffusivity of the specimen increased in the temperature range between 298 and 523 K. For the specimen aged for five hours, the thermal conductivity was 12% higher than that of the as-quenched specimens at 298 K. It is confirmed that the thermal diffusivity and thermal conductivity of the Al-4.5%Cu alloy significantly depend on their thermal history at temperatures below 523 K. The precipitation and dissolution of the Al2Cu phase were confirmed via DSC for the alloys, and the formation of coefficient of thermal expansion peaks in TMA was caused by precipitation. The precipitation of supersaturated solid solution of Al-4.5%Cu alloys had an additional linear expansion of ≈ 0.05 % at 643 K during thermal expansion measurement.

Changes on the Microstructure of an Al-Cu-Si Ternary Eutectic Alloy with Different Mold Preheating Temperatures (금형 예열온도에 따른 Al-Cu-Si 3원계 공정합금의 미세조직 변화)

  • Oh, Seung-Hwan;Lee, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.42 no.5
    • /
    • pp.273-281
    • /
    • 2022
  • In order to understand the solidification behavior and microstructural evolution of the Al-Cu-Si ternary eutectic alloy system, changes of the microstructure of the Al-Cu-Si ternary eutectic alloy with different cooling rates were investigated. When the mold preheating temperature is 500℃, primary Si and Al2Cu dendrites are observed, with (α-Al+Al2Cu) binary eutectic and needle-shaped Si subsequently observed. In addition, even when the mold preheating temperature is 300℃, primary Si and Al2Cu dendrites can be observed, and both (α-Al+Al2Cu+Si) areas observed and areas not observed earlier appear. When the mold preheating temperature is 150℃, bimodal structures of the binary eutectic (α-Al+Al2Cu) and ternary eutectic (α-Al+Al2Cu+Si) are observed. When the preheating temperature of the mold is changed to 500℃, 300℃, and 150℃, the greatest change is in the Si phase, and upon reaching the critical cooling rate, the ternary eutectic of (α-Al+Al2Cu+Si) forms. If the growth of the Si phase is suppressed upon the formation of (α-Al+Al2Cu+Si), the growth of both Al and Cu is also suppressed by a cooperative growth mechanism. As a result of analyzing the Al-27wt%Cu-5wt%Si ternary eutectic alloy with a different alloy design simulation programs, it was confirmed that different results arose depending on the program. A computer simulation of the alloy design is a useful tool to reduce the trial and error process in alloy design, but this effort must be accompanied by a task that increases reliability and allows a comparison to microstructural results derived through actual casting.

A Study on the Die Casting of Mg-9Al-1Zn Alloy for Air Bag Case (Mg-9Al-lZn 합금 자동차 에어백 케이스의 다이캐스팅에 관한 연구)

  • Kim, Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.77-83
    • /
    • 2002
  • Magnesium alloys casting are gaining increased acceptance in the automotive and electronic industeries and die casting is the most efficient method of manufacturing such mass produced parts. This study has been investigated the microstructures and mechanical properties of Mg-9Al-lZn alloy fabricated by die casting process for development of air bag case. The microstructure of die casted specimen were composed of pro-eutectic magnesium solid solution and $\beta$(Mg17Al12) precipitates. The tensile strength of as-fabricated Mg-9Al-lZn alloy revealed 231.4MPa. It was found that Mg-9Al-lZn alloy have good corrosion resistance in electrochemical polarization test.

Microstructural and Mechanical Characteristics of the ECAPed P/M 6061 Al Alloy (ECAP가공한 P/M 6061 Al 합금의 미세조직과 기계적 성질)

  • 장시영
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • Microstructural and mechanical characteristics of P/M 6061 Al alloy subjected to equal channel angular pressing (ECAP) were investigated. The P/M 6061 Al alloy had an intial grain size of approximately $20\mutextrm{m}$. An equiaxed ultra-fine grained structure with the mean grain size of $~50 \mutextrm{m}$ was obtained by four repetitive ECAP at 473 K. The microhardness of P/M 6061 Al alloy was drastically increased from about 40 Hv to 80 Hv by two repetitive ECAP at 373 K. However, the microhardness decreased with increasing ECAP temperature. The tensile stength of as-hot-pressed P/M 6061 Al alloy before ECAP was 95 MPa, whereas it increased to both 248 MPa after two repetitive ECAP at 373 K and 130 MPa after four repetitive ECAP at 473 K. The tensile properties of the ECAPed sample were compared with those of commercial cast 6061-O and 6061-T4 Al alloys.

Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy (분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동)

  • Kim M. S.;Bang W.;Park W. J.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

Study on refining and melting of sponge Ti and Ti-6Al-4V alloy by electron beam melting (전자선 용해법에 의한 sponge Ti 및 Ti-6Al-4V 합금의 정련 및 용해에 관한 연구)

  • 김휘준;백홍구;윤우영;이진형;강춘식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.224-234
    • /
    • 1997
  • In order to make high purity materials including low contents of interstitial impurities, 70 ㎾ electron beam melter was manufactured. The sponge Ti and Ti-6Al-4V alloy were required and melted by electron beam melter. Based on the experimental results of sponge Ti refining by electron beam melting, the purity of Ti was increased for 180 seconds but thereafter did not significantly vary. In addition, it was found that with number of melting, the purity of Ti did and vary but the yield of Ti was decreased. As a results of Ti refining, high purity Ti of 3N (99.9 wt%) could be obtained including interstitial impurities with total contents of which were maximum 900 ppm. From the experimental results of Ti-6Al-4V alloy electron beam melting, the amounts of Al loss could be estimated through thermodynamic data calculated from the regular solution model and the model of solute removal kinetics and the alloy composition calculated from the models was in accord with the experimental composition of the alloy, It took 10 minutes to make Ti-29Al-4V alloy calculated from the model into Ti-6Al-4V alloy and the composition of Ti-6Al-4V alloy was very homogeneous.

  • PDF