• 제목/요약/키워드: Al Alloy

검색결과 2,893건 처리시간 0.029초

計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성 (The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • 제3권2호
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

경질양극산화를 실시한 Al5052합금의 내공식성에 미치는 ECAP의 영향 (Effect of Equal Channel Angular Pressing on the Pitting Corrosion Resistance of Hard Anodized Al5052 Alloy)

  • 손인준
    • 한국표면공학회지
    • /
    • 제48권4호
    • /
    • pp.142-148
    • /
    • 2015
  • The effect of equal channel angular pressing (ECAP) on the pitting corrosion resistance of hard anodized Al5052 alloy was investigated. The degree of internal stress generated in anodic oxide films during hard anodization was also evaluated with a strain gauge method. The pitting corrosion resistance of hard anodized Al5052 alloy was greatly decreased by ECAP. Cracks occurred in the anodic oxide film during hard anodization and these cracks were larger and deeper in the alloy with ECAP than without. The pitting corrosion was accelerated by cracks. The internal stress present in the anodic oxide films was compressive and the stress was higher in the alloys with ECAP than without, resulting in an increased likelihood of cracks. The pitting corrosion resistance of hard anodized Al5052 alloy was improved by annealing at the range of 473-573K after ECAP processed at room temperature for four passes. The compressive internal stress gradually decreased with increasing annealing temperature. It is assumed that the improvement in the pitting corrosion resistance of hard anodized Al5052 alloy by annealing may be attributed to a decrease in the likelihood of cracks due to the decreased internal stresses in anodic oxide films.

Study of Al-Alloy Foam Compressive Behavior Based on Instrumented Sharp Indentation Technology

  • Kim Am-Kee;Tunvir Kazi
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.819-827
    • /
    • 2006
  • The stress-strain relation of aluminum (Al) alloy foam cell wall was evaluated by the instrumented sharp indentation method. The indentation in a few micron ranges was performed on the cell wall of Al-alloy foam having a composition or Al-3wt.%Si-2wt.%Cu-2wt.%Mg as well as its precursor (material prior to foaming). To extract the stress-stram relation in terms of yield stress ${\sigma}_y$, strain hardening exponent n and elastic modulus E, the closed-form dimensionless relationships between load-indentation depth curve and elasto-plastic property were used. The tensile properties of precursor material of Al-alloy foam were also measured independently by uni-axial tensile test. In order to verify the validity of the extracted stress-strain relation, it was compared with the results of tensile test and finite element (FE) analysis. A modified cubic-spherical lattice model was proposed to analyze the compressive behavior of the Al-alloy foam. The material parameters extracted by the instrumented nanoindentation method allowed the model to predict the compressive behavior of the Al-alloy foam accurately.

액상 침적에 의한 Monel 400기지상에 형성된 Al-Cu 합금 코팅층의 조직 및 경도 (Microstructure and Hardness of Al-Cu Alloy Coating on Monel 400 by Hot Dipping)

  • 조선욱;이임렬
    • 한국표면공학회지
    • /
    • 제29권4호
    • /
    • pp.278-285
    • /
    • 1996
  • The structure of coating layer formed by hot dip Al-Cu alloy coating on Monel 1400 metal was studied. The coating layer consists of alloyed layer adjacent to the Monel 400 substrate and Al-Cu alloy. It was found that the hardness of coating increased with dipping time and heat treatment associated with the diffusion and the formation of intermetallic compound at the interface. However the thickness of coating layer was decreased at high dipping temperature due to tile higher viscosity of liquid coating alloy. Diffusion heat treatment at $600^{\circ}C$ after coating resulted in the disappearence of adhered Al(Cu) and $CuAl_2$ phases, and then they transformed into the new phases of CuAl and Al7Cu4Ni at coating layer.

  • PDF

해수용액에서 선박용 Al-Mg-Si 합금의 전기화학적 실험에 의한 방식전위 결정 (The Protection Potential Decision by Electrochemical Experiment of Al-Mg-Si Alloy for Ship in Seawater)

  • 정상옥;박재철;한민수;김성종
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.48-55
    • /
    • 2010
  • The many vessels are built with FRP(Fiber-Reinforced Plastic) material for small boats and medium vessels. However, FRP is impossible to be used for recyclable material owing to environmental problems and causes large proportion of collision accidents because radar reflection wave is so weak that large vessels could not detect FRP ships during the sailing. Hence, Al alloy comes into the spotlight to solve these kinds of problems as a new-material for next generation instead of FRP. Al alloy ships are getting widely introduced for fish and leisure boats to save fuel consumption due to lightweight. In this study, it was selected 6061-T6 Al alloy which are mainly used for Al-ships and carried out various electrochemical experiment such as potential, anodic/cathodic polarization, Tafel analysis, potentiostatic experiment and surface morphologies observation after potentiostatic experiment for 1200 sec by using the SEM equipment to evaluate optimum corrosion protection potential in sea water. It is concluded that the optimum corrosion protection potential range is -1.4 V ~ -0.7 V(Ag/AgCl) for 6061-T6 Al alloy, in the case of application of ICCP(Impressed current cathodic protection), which was shown the lowest current density at the electrochemical experiment and good specimen surface morphologies after potentiostatic experiment for Al-Mg-Si(6061-T6) Al alloy in seawater environment.

Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구 (The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams)

  • 정승룡;허보영
    • 한국주조공학회지
    • /
    • 제31권3호
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

Temperature-dependent Luminescence Properties of Digital-alloy In(Ga1-zAlz)As

  • Cho, Il-Wook;Ryu, Mee-Yi;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • 제27권3호
    • /
    • pp.56-60
    • /
    • 2018
  • The optical properties of the digital-alloy $(In_{0.53}Ga_{0.47}As)_{1-z}/(In_{0.52}Al_{0.48}As)_z$ grown by molecular beam epitaxy as a function of composition z (z = 0.4, 0.6, and 0.8) have been studied using temperature-dependent photoluminescence (PL) and time-resolved PL (TRPL) spectroscopy. As the composition z increases from 0.4 to 0.8, the PL peak energy of the digital-alloy $In(Ga_{1-z}Al_z)As$ is blueshifted, which is explained by the enhanced quantization energy due to the reduced well width. The decrease in the PL intensity and the broaden FWHM with increasing z are interpreted as being due to the increased Al contents in the digital-alloy $In(Ga_{1-z}Al_z)As$ because of the intermixing of Ga and Al in interface of InGaAs well and InAlAs barrier. The PL decay time at 10 K decreases with increasing z, which can be explained by the easier carrier escape from InGaAs wells due to the enhanced quantized energies because of the decreased InGaAs well width as z increases. The emission energy and luminescence properties of the digitalalloy $(InGaAs)_{1-z}/(InAlAs)_z$ can be controlled by adjusting composition z.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Electromagnetic Duo-Cast Al Hybrid Material

  • Suh, Jun Young;Park, Sung Jin;Kwon, Do-Kyun;Chang, Si Young
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.499-505
    • /
    • 2018
  • This investigates the microstructure and mechanical properties of Al hybrid material prepared by electromagnetic duo-casting to determine the effect of heat treatment. The hybrid material is composed of an Al-Mg-Si alloy, pure Al and the interface between the Al-Mg-Si alloy and pure Al. It is heat-treated at 373, 573 and 773K for 1h and T6 treated (solution treatment at 773K for 1h and aging at 433K for 5h). As the temperature increases, the grain size of the Al-Mg-Si alloy in the hybrid material increases. The grain size of the T6 treated Al-Mg-Si alloy is similar to that of one heat-treated at 773K for 1h. The interface region where the micro-hardness becomes large from the pure Al to the Al-Mg-Si alloy widens with an increasing heat temperature. The hybrid material with a macro-interface parallel to the tensile direction experiences increased tensile strength, 0.2 % proof stress and the decreased elongation after T6 heat treatment. On the other hand, in the vertical direction to the tensile direction, there is no great difference with heat treatment. The bending strength of the hybrid material with a long macro-interface to the bending direction is higher than that with a short macro-interface, which is improved by heat treatment. The hybrid material with a long macro-interface to the bending direction is fractured by cracking through the eutectic structure in the Al-Mg-Si alloy. However, in the hybrid material with a short macro-interface, the bending deformation is observed only in the limited pure Al.

선택적 레이저 용융공정으로 제조된 Al-Si-Mg 합금의 열처리에 따른 미세조직 및 특성평가 (Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment)

  • 이기승;엄영성;김경태;김병기;유지훈
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.138-145
    • /
    • 2019
  • In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/s at the laser power of 180 and 270 W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180 W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.

오스테나이트계 Fe-25Mn-Al-0.5C강의 피로성질에 미치는 Al 첨가의 영향 (Effect of Al Addition on Fatigue Properties of Austenitic Fe-25Mn-Al-0.5C steels)

  • 도정호;전채홍;권숙인
    • 열처리공학회지
    • /
    • 제11권4호
    • /
    • pp.274-282
    • /
    • 1998
  • The effect of Al addition on the fatigue properties of austenitic Fe-25Mn-Al-0.5C steels was studied. When Al was not added to the Fe-25Mn 0.5C steel, the strain induced ${\varepsilon}$ martensites, deformation twins and slip bands were formed during fatigue deformation. When 2wt% of Al was added to the steel, the deformation twins and slip bands were formed during fatigue deformation. When 5wt% of Al was added, only slip bands were formed. In low cycle fatigue test, the alloys containing 0wt% and 2wt%Al showed the cyclic hardening due to ${\varepsilon}$ martensites and deformation twins, resulting in shorter fatigue lives than the alloy containing 5wt%Al. In fatigue crack propagation test, the alloy without Al showed the highest crack propagation rate. The fracture surface of the alloy without Al was flat, whereas that of the alloy with 2% or 5%Al was rough. The ${\Delta}K_{th}$, values of the alloys with 0%, 2% and 5%Al were 16, 17.5, and $20.5MPam^{1/2}$, respectively.

  • PDF