• Title/Summary/Keyword: Al 5052

Search Result 124, Processing Time 0.025 seconds

Mechanical Properties of Ultrafine Grained 5052 Al Alloy produced by Cryogenic Rolling Process (극저온 압연으로 제조된 5052 Al Alloy의 기계적 성질)

  • Lee Y. B.;Nam W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.233-239
    • /
    • 2004
  • The effect of annealing temperature on microstructures and mechanical properties of the sheets received $88\%$ reduction at cryogenic temperature was investigated for the annealing temperature of $150\~300^{\circ}C$, in comparison with those at room temperature. The presence of equiaxed grains, whose size is about 200nm in a diameter, was observed in 5052 Al alloy deformed $88\%$ and annealed $200^{\circ}C$ for an hour. When compared with the deformation at room temperature, the deformation at cryogenic temperature showed the higher strengths and equivalent elongation after annealing at the annealing temperature below $200^{\circ}C$. However, for annealing above $250^{\circ}C$ materials deformed at cryogenic temperature showed the lower strength than those deformed at room temperature. This behavior might be attributed to the higher rate of recrystallization and growth in materials deformed at cryogenic temperature during annealing, due to the lager density of dislocations accumulated during the deformation.

  • PDF

Low Cycle Fatigue and Serration Behavior of Plastically Deformed and Annealed 5052 Al Alloy (5052 Al 합금의 소성가공 및 열처리에 따른 피로거동 및 serration의 변화)

  • Cha, J.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.131-136
    • /
    • 2010
  • The LCF (low cycle fatigue) behavior and the serration phenomena in the plastically deformed and non-deformed 5052 Al alloy were investigated. The plastic deformation was performed by 1 pass or 4 passes in ECAP (equal channel angular pressing) followed by annealing. Only cyclic hardening continued from the beginning until fracture at all strain amplitudes during LCF in the non-deformed alloy, which was caused by the increase in dislocation density during fatigue. Slight cyclic hardening followed by plateau until fracture was observed during LCF in the ECAPed alloy, which was caused by the slight increase in dislocation density in the beginning and then keeping constant in dislocation density afterward until fracture by forming subgrains in this stage of fatigue. The serrations on the stress-strain curves of this alloy were observed, which indicate that the dynamic strain aging (DSA) is occurring during plastic deformation. The variation in amplitudes of serration was studied by changing the strain rate in tensile or fatigue tests.

Fatigue Strength Evaluation of Self-Piercing Riveted Al 5052-H32 Joints under Mixed Mode Loading Conditions (혼합모드상태에서의 Al 5052-H32 셀프 피어싱 리벳 접합부의 피로강도 평가)

  • Kwak, Jin Gu;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In this study, static and fatigue tests on the self-piercing riveted (SPR) joint were conducted using cross-shaped specimens with aluminum alloy (Al-5052) sheets. Mixed mode loading was achieved by changing the loading angles of 0, 45, and 90 degrees using a special fixture to evaluate the static and fatigue strengths of the SPR joints under mixed mode loading conditions. Simulations of the specimens at three loading angles were carried out using the finite element code ABAQUS. The fatigue specimens failed in an interfacial mode where a crack initiated at the upper sheet and propagated along the longitudinal direction and finally fractured Maximum principal stress, von-Mises effective stress failed to correlate the fatigue lifetimes at three loading angles. However, the equivalent stress intensity factor was found to be appropriate to correlate the fatigue lifetimes at three loading angles.

Characteristic of Mechanical Clinching for Al5052 to High-Strength Steels (Al5052 합금소재와 고장력강판의 이종재료 클린칭 접합특성)

  • Lee, Chan-Joo;Lee, Sang-Kon;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.997-1006
    • /
    • 2010
  • For manufacturing modern cars, so-called multi-materials, such as aluminum alloy with high-strength steels, are used. For obtaining such materials, a new joining method is required to achieve the multi-material design. Mechanical clinching is one of joining methods used to join the dissimilar materials. The objective of this study is to investigate the characteristics of mechanical clinching of Al5052 alloy to high-strength steels (SPFC440, 590, 780). Using FE-analysis and clinching experiment, the joinability of Al5052 alloy to high-strength steel is evaluated by geometrical shape of mechanical clinched joint, such as neck-thickness and undercut. Further, the joint strength is evaluated by performing a single-lap shear test. The upper high-strength steel SPFC780 was not clinched because of the necking of the upper sheet. The joint strength increased with increasing strength of the upper sheet. For the lower high-strength steel sheet, the joinability and joint strength decreased with increasing strength of the lower sheet.

The Effect of CTSA Treatment on the Corrosion Resistance of AA5052 Alloy (AA5052 합금의 내식성에 영향을 미치는 CTSA처리의 영향)

  • Gu, Ga-Yeong;Bae, Seong-Hwa;Son, In-Jun;Jeong, So-Yeong;Baek, Ji-Yeon;Im, Lee-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.91-91
    • /
    • 2018
  • 스마트폰 및 카메라 케이스 등에 널리 적용되고 있는 알루미늄은 내식성, 내마모성과 같은 물리적, 화학적 성질이 우수하지 못하여 이를 향상시키기 위해 양극산화법이 산업적으로 널리 이용되고 있다. 알루미늄에 양극산화법을 적용하면 강도, 내마모성 및 내식성이 향상될 뿐만 아니라 알루미늄 표면에 규칙적으로 배열된 30nm~100nm 크기의 pore에 염료를 흡착시켜 다양한 색상의 외관을 가지는 양극산화피막을 형성시킬 수 있다. Pore간의 간격은 수십 nm~수백 nm 정도이며, pore의 크기와 간격 및 깊이는 양극산화조건(양극산화 전압, 전해액의 종류와 농도 및 온도)에 의해 크게 변화한다. 본 연구에서는 CTSA를 통한 AA5052합금의 양극산화 착색처리와 내식성의 개선 여부를 조사하였다. 알루미늄은 Al5052에는 Mg 외에, 소량의 Si을 포함하고 있다. 이 Si는 알루미늄 표면에 석출물 형태로 존재한다. 이 Si 석출물은 양극산화 시 기지상의 알루미늄 표면의 pore 형성을 방해하는 원인이다. 이러한 Si 석출물의 존재가 균일한 pore 형성을 방해하게 되고, 불균일한 포어를 가지는 표면은 착색처리 시 색상의 편차를 크게하는 원인이 되어 불량률을 높인다. 이러한 요인을 개선하기 위해 CTSA의 처리조건을 최적화 하였다. Al5052 합금을 이용하여 에칭, 디스머트, CTSA처리를 실시하였다. $55^{\circ}C$ 100g/L NaOH 용액에서 에칭을, $25^{\circ}C$ 10 vol.% $HNO_3$ 용액에서 디스머트를 실시한 다음, CTSA의 조건을 다르게 하고 SEM을 통해 Si 석출물의 감소율을 비교하였다. CTSA조건으로는 시간(60s, 180s, 300s), 농도(10%, 20%, 30%, 40%) 및 온도($25^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$)를 변화시켰으며, CTSA 처리 전과 후의 시편의 위치를 동일하게 하여 비교하였다. 결과 적정 시간, 농도, 온도 조건하에 pore를 불균일하게 하는 Si 석출물들이 제거되는 것을 확인할 수 있었다. CTSA 처리는 온도가 높을수록, 시간이 길수록, 농도가 적당히 진할수록 석출물이 잘 제거되는 것을 확인하였다. 또한 CTSA처리가 알루미늄의 내식성에 미치는 영향을 확인하기 위해서 침적시험에 의한 무게감소율 및 전기화학측정을 실시하였다.

  • PDF

Microstructure and Mechanical Properties of AA6061/AA5052/AA1050 Alloy Fabricated by Cold Roll-Bonding and Subsequently Annealed

  • Seong-Hee Lee;Sang-Hyeon Jo;Jae-Yeol Jeon
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.439-446
    • /
    • 2023
  • Changes in the microstructure and mechanical properties of as-roll-bonded AA6061/AA5052/AA1050 three-layered sheet with increasing annealing temperature were investigated in detail. The commercial AA6061, AA5052 and AA1050 sheets with 2 mm thickness were roll-bonded by multi-pass rolling at ambient temperature. The roll-bonded Al sheets were then annealed for 1 h at various temperatures from 200 to 400 ℃. The specimens annealed up to 250 ℃ showed a typical deformation structure where the grains are elongated in the rolling direction in all regions. However, after annealing at 300 ℃, while AA6061 and AA1050 regions still retained the deformation structure, but AA5052 region changed into complete recrystallization. For all the annealed materials, the fraction of high angle grain boundaries was lower than that of low angle grain boundaries. In addition, while the rolling texture of the {110}<112> and {123}<634> components strongly developed in the AA6061 and AA1050 regions, in the AA5052 region the recrystallization texture of the {100}<001> component developed. After annealing at 350 ℃ the recrystallization texture developed in all regions. The as-rolled material exhibited a relatively high tensile strength of 282 MPa and elongation of 18 %. However, the tensile strength decreased and the elongation increased gradually with the increase in annealing temperature. The changes in mechanical properties with increasing annealing temperature were compared with those of other three-layered Al sheets fabricated in previous studies.

Numerical Study for the Improvement of Tapered-hole Clinching Joint Strength of Fiber Metal Laminates and Aluminum 5052 using the Taguchi Method (다구찌 기법을 이용한 섬유금속적층판과 Al 5052 합금의 경사 홀 클린칭 접합력 향상을 위한 수치적 연구)

  • Kang, D.S.;Lee, B.E.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • The purpose of the current study is to improve the clinching joint strength of aluminum and fiber metal laminates (FMLs) comprised of three layers. The joining of FML and Al 5052 by a conventional clinching joint has some disadvantages such as necking of the upper sheet, lack of interlocking, defects caused by the vertical load, and especially loss of strength of the composite material due to the low ductility. In the current study, a tapered-hole clinching method is proposed as an alternative for the joining of Al 5052 and FMLs. A hole with a tapered shape is formed before the joining process. The design parameters were evaluated using the Taguchi method for the geometry of the tapered hole in order to determine the maximum separation load. The diameter of the punch corner, clearance, punch stroke and the tapered length were used as the main variables in the Taguchi method. In conclusion, the contribution ratio for each of the fours variable examined was 35.07%, 22.44%, 21.32% and 14.11%, respectively. In addition, the appropriate combination of the design parameters can make a 5% improvement in the vertical direction joint strength.

Joint Characteristics of Spot Friction Stir Welded A 5052 Alloy Sheet (마찰교반 점용접한 A 5052 알루미늄 합금판재의 접합부 특성)

  • Yeon, Yun-Mo;Lee, Won-Bae;Lee, Chang-Yong;Jung, Seung-Boo;Song, Keun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • In this study, the microstructure and mechanical properties of spot friction stir welded A 5052 alloy were investigated. Especially, the effect of insertion depth of welding tool on microstructural changes and mechanical properties was investigated in order to obtain the optimum spot friction stir welding condition. The lap shear load of spot friction stir welded A 5052 alloy plates showed lower value at the shallowest insertion depth and increased with tool insertion depth. At 1.6mm, the maximum value of 3.35 kN was obtained, and then dropped to lower load when the insertion depth was deeper. Spot friction stir welded joints showed shear fracture mode at shallower insertion depths and fracture mode changed to plug fracture mode as the insertion depth was deeper.

Forming of Metallic Bipolar Plates by Dynamic Loading (Dynamic Load를 이용한 박막 금속 분리판 성형기술)

  • Koo, J.Y.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2012
  • The weight of the bipolar plate is one of the crucial aspects of improving power density in PEMFC stacks. Aluminum alloys have good mechanical properties such as density, electrical resistivity, and thermal conductivity. Furthermore, using aluminum in a bipolar plate instead of graphite reduces the bipolar plate cost and makes machining easier. Therefore in this study, an aluminum alloy was selected as the appropriate material for a bipolar plate. Results from feasibility experiments with the aim of developing fuel cells consisting of Al bipolar plates with multiple channels are presented. Dynamic loading was applied and the formability of micro channels was estimated as a function of punch pressure and die radius. Sheets of Al5052 with a thickness of 0.3mm were used. For a die radius of 0.1mm the formability was optimized with a sine wave dynamic load of 90kN at maximum pressure and 5 cycles of a sine wave punch travel. The experimental results demonstrate the feasibility of the proposed manufacturing technique for producing bipolar plates.

Consideration of thickness change during progressive drawing process of automotive coupler parts(AL5052-H32) (자동차 커플러 부품(Al5052-H32)의 프로그래시브 드로잉 공정 시 두께 변화 고찰)

  • Park, Sang-Byung;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.37-43
    • /
    • 2020
  • Progressive drawing processing is one of the manufacturing processes used to mass-produce a variety of products on the industrial site. In this study, the goal is to achieve a uniform product thickness of at least 1.3mm by reducing the wall thickness of the coupler parts used in automotive air conditioning systems to within 15% using A5052-H32 materials. The progressive die was designed using Blank's law of volume invariance. Due to the characteristics of the drawing process, the material thickness in the punch R part decreases and the thickness in the die R part increases. When designing the progressive die of the coupler part, an ironing method, a push back method, and a stand-alone die pad method were applied to each process to design a mold in consideration of the drawing rate and to artificially adjust the thickness change. The suitability of the method used in die design was investigated by measuring the thickness change of forming parts for each process. In the final part, it was confirmed that the thickness measurement values of the five regions of a radial line were implemented as 1.34-1.36 mm.