• Title/Summary/Keyword: Al 5052

Search Result 124, Processing Time 0.022 seconds

Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints (셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가)

  • Kang, Se Hyung;Hwang, Jae Hyun;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

The Weldability of a Thin Friction Stir Welded Plate of Al5052-H32 using High Frequency Spindle (고주파스핀들을 이용한 박판 알루미늄합금소재(Al5052-H32)의 마찰교반접합에 의한 용접성 평가)

  • Joo, Young-Hwan;Park, Young-Chan;Lee, Yong-Moon;Kim, Kwang-Ho;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.90-95
    • /
    • 2017
  • Recently, smaller and lighter products have become of interest in industry applications that increasingly demand thin plate joints of thickness 1.0 mm or less using friction stir welding. In this study, high frequency spindles that run at 3,500-6,500 rpm are introduced for thin friction stir-welded plates. Weldability tests are performed for the butt-joint method of Al5052-H32 alloy of 1.0 mm thickness under 3,500-6,500 rpm spindle revolution with 250-400 mm/min feed speed. An optical microscope was used to analyze the bid structure of the welded zone and stir zone. The tensile-strength and hardness of the welded zone were then measured.

Characterization of resistance spot welded Al5052/DP590 dissimilar materials and processing optimization (저항점용접된 Al5052/DP590 이종소재의 특성평가 및 공정의 최적화)

  • Jo, Beom-Ji;Kim, Ji-Sun;Yoo, Hyo-Sang;Kim, In-Ju;Lee, Seong-Hui;Kim, Young-Gon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • IRW(Inverter Resistance Welding) process and DSW(Delta-spot welding) process for dissimilar materials of DP590 and Al5052 were performed to evaluate the welding quality and mechanical properties. IRW experiment was carried out with changing the welding current. The other welding parameters such as pressure force, weld time, squeezing time and holding time were fixed. On the anther hand, DSW experiment was performed using the process tape at welding current of 11.5kA. The other conditions were same as IRW conditions. The various testes such as shear tensile strength, nugget diameters, EDS, SEM and cross-sectional observation for weld zone was performed. As a result, IMC(Inter Metallic Compound) thickness at 11.5kA was thinner than those of 9.5kA and 10.5kA conditions. In addition, thined IMC layer was observed when high electric current apply to the materials(DP590 and Al5052) in a short time throught dissimilar resistance spot welding controling welding conditions. The relationship between the thickeness of IMC and current intensity was after discussed.

The Joints Characteristics of Al 5052 Aluminium Alloy in Friction Stir Welds (마찰교반 용접조건에 따른 Al 5052 알루미늄 합금의 접합특성)

  • Kang, Dae-Min;Jang, Jin-Suk;Park, Kyong-Do;Lee, Dai-Yeal
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • In this study, the tensile tests and hardness tests were carried out for the joints characteristics in friction stir welds of Al 5052 alloy. Three way factorial design was applied to optimal welding conditions, whose control factors were shoulder diameter, rotation speed and welding speed of tool. From the results of this study, the optimum condition for maximum yield strength was predicted as the shoulder diameter of 15 mm, welding speed of 500mm/min and rotating speed of 1000 rpm. And the presumed optimal yield strength was estimated to be $167.36{\pm}7.82MPa$ with 99% reliability. In addition the increaser rotation speed of tool and the decreaser welding speed, the decreaser the hardness at welding part.

Characteristics of Cavitation-Erosion Damage with Amplitude in Seawater of 5052-O Al Alloy for Ship (선박용 5052-O 알루미늄 합금의 해수 내 진폭 변수에 따른 캐비테이션-침식 손상 특성)

  • Yang, Ye-Jin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.239-249
    • /
    • 2020
  • The characteristics of cavitation-erosion damage with changes in the amplitude of 5052-O aluminum alloy for ships were investigated in a seawater environment. In the cavitation-erosion experiment, the cavitation environment was created using a vibration-generating device with a piezo-electric effect. The amplitudes of 5 ㎛, 10 ㎛, and 30 ㎛ were created by changing the geometric shape of the cavitation horn. The resistance characteristics of cavitation-erosion damage were evaluated by weight loss and pitting area. The damaged surface was analyzed using scanning electron microscopy (SEM) and 3D optical microscopy. As the amplitude increased, the amount of damage and the area of the damaged surface increased, and the damage was concentrated at the center and edge of the specimen. The pit was created after the initial incubation period with increasing experimental time, and then the pits were merged to grow and propagate into craters, and eventually, the surface was detached and damaged. The cavitation-erosion damage after 30 minutes with amplitude of 10 ㎛ and 30 ㎛ was 1.48 and 2.21 times compared to 5 ㎛, respectively.

Joint characteristics of advanced high strength steel and A15052 alloy in the clinching process (초고장력강과 알루미늄 5052 소재의 클린칭 접합특성)

  • Lee, C.J.;Kim, J.Y.;Lee, S.K.;Ko, D.C.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.401-404
    • /
    • 2009
  • The purpose of this study is investigating the joint characteristics of advanced high strength steel DP780 and Al5052 alloy sheet in the clinching process. It is difficult to join the advanced high strength steel with light-weight materials like aluminum alloy, because of low formability of DP780. The defects of clinching joint such as necking of the upper sheet, cracks of the lower sheet and no interlocking were occurred by different ductility between advanced high strength steel and aluminum alloy. The clinching conditions should be optimized to interlock without any defects. In this study, the effect of process parameters of clinching process on joinability of advanced high strength steel with Al5052 alloy was investigated by using FE-analysis. From the result of FE-analysis, the clearance between clinching punch and die, die depth and the shape of die cavity mainly affected the joinability of advanced high strength steel with Al5052 alloy.

  • PDF

Electrochemical Corrosion Damage Characteristics of Aluminum Alloy Materials for Marine Environment (해양환경용 알루미늄 합금 재료의 전기화학적 부식 손상 특성)

  • Kim, Sung Jin;Hwang, Eun Hye;Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.421-429
    • /
    • 2018
  • In this study, various electrochemical experiments were carried out to compare the corrosion characteristics of AA5052-O, AA5083-H321 and AA6061-T6 in seawater. The electrochemical impedance and potentiostatic polarization measurements showed that the corrosion resistance is decreased in the order of AA5052-O, AA5083-H321 and AA6061-T6, with AA5052-O being the highest resistant. This is closely associated with the property of passive film formed on three tested Al alloys. Based on the slope of Mott-Schottky plots of an n-type semiconductor, the density of oxygen vacancies in the passive film formed on the alloys was determined. This revealed that the defect density is increased in the order of AA5052-O, AA5083-H321 and AA6061-T6. Considering these facts, it is implied that the addition of Mg, Si, and Cu to the Al alloys can degrade the passivity, which is characterized by a passive film structure containing more defect sites, contributing to the decrease in corrosion resistance in seawater.

Microstructure and Mechanical Properties of Cold Roll-Bonded Layered AA6061/AA5052/AA6061/AA5052 Aluminum Alloy Sheet (냉간압연접합된 층상 AA6061/AA5052/AA6061/AA5052 알루미늄합금판재의 미세조직 및 기계적 성질)

  • Jo, Sang-Hyeon;Park, Bo-Bae;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.161-167
    • /
    • 2022
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 layered sheet. Two AA6061 and one AA5052 sheets of 2mm thickness, 40mm width and 300mm length are alternately stacked, then reduced to a thickness of 2.0 mm by multi-pass cold rolling after surface treatment such as degreasing and wire brushing. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at a rolling speed of 6.0 m/sec. The roll-bonded AA6061/AA5052/AA6061/AA5052 layered sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The microstructure of the as-roll bonded and the age-hardened Al sheets was revealed by SEM observation; the mechanical properties were investigated by tensile testing and hardness testing. After T4 and T6 aging treatment, the specimens had a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 regions. The as-roll-bonded specimen showed a clad structure in which the hardness of AA5052 regions was higher than that of AA6061 regions. However, after T4 and T6 aging treatment, specimens exhibited different structures, with hardness of AA6061 regions higher than that of AA5052 regions. Strengths of T6 and T4 age-treated specimens were found to increase by 1.55 and 1.36 times, respectively, compared to the value of the starting material.

Study on the Optimization Field Welding Conditions of Low Heat-Input Pluse MIG Welding Process for 5052 Aluminum Alloy Sheets (Al 5052 합금의 저입열 Pulse MIG 최적 현장 용접조건 산정에 관한 실험적 연구)

  • Kim, Jae-Seong;Lee, Young-Gi;An, Ju-Sun;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.80-84
    • /
    • 2011
  • The weight reduction of the transportations has become an important technical subject Al and Al alloys, especially Al 5052 alloys have been being applied as door materials for automobile. One of the most widely known car weight-reduction methods is to use light and corrosion-resistant aluminum alloys. However, because of high electrical and thermal conductivity and a low melting point, it is difficult to obtain good weld quality when working with the aluminum alloys. Also, Pulse MIG welding is the typical aluminum welding process, but it is difficult to apply to the thin plate, because of melt-through and humping-bead. In order to enhance weld quality, welding parameters should be considered in optimizing the welding process. In this experiment, Al 5052 sheets were used as specimens, and these materials were welded by adopting new Cold Metal Transfer (CMT) pulse process. The proper welding conditions such as welding current, welding speed, torch angle $50^{\circ}$ and gap 0~1mm are determined by tensile test and bead shape. Through this study, range of welding current are confirmed from 100A to 120A. And, the range of welding speed is confirmed from 1.2m/min to 1.5m/min.