• 제목/요약/키워드: Al(III)

Search Result 473, Processing Time 0.025 seconds

Changes in the Removal Efficiency of Total Phosphorus by the Basicity of Al(III) Coagulant (Al(III) 응집제의 염기도에 따른 총인 제거효율의 변화)

  • Han, Seung-Woo;Lee, Chul-Hee;Lee, Jae-Kwan;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2012
  • The analysis of Al (III) hydrolysis species with PACls prepared by different basicity showed that mononmeric Al species were reduced while precipitate Al species were increased with an increase in basicity for PACls. In the case of the PACl with 13.6% basicity, monomeric Al species were 81%, polymeric Al (III) species 19%, precipitate Al (III) species was 0%, as showing the dominant monomeric Al species. The PACl with 13.6% basicity showed above 80% of turbidity removal efficiency without any restabilization. In addition, the PACl with 13.6% basicity showed higher organic removal expressed by $UV_{254}$ which was caused by lower coagulation pH. The PACl containing the higher amount of monomeric Al species was the most beneficial for T-P and $PO_{4}-P$ removal.

The Effect of PVA-Al(III) Complex on the Pore Formation and Grain Growth of UO$_2$ Sintered Pellet (PVA-Al(III) 착물이 UO$_2$ 소결체의 기공형성과 결정립성장에 미치는 영향(I))

  • 이신영;김형수;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.783-790
    • /
    • 1998
  • The characterization of the complexation reaction of PVA and Al(III) ion at different pH and the sint-ering behaviour of UO2 containing the PVA-Al(III) complexes were investigated. Compared with pure PVA powder the complexed PVA-Al(III) powder had compacter shape and lower decomposition temperature The major phase of PVA-Al(III) complex decomposed at 90$0^{\circ}C$ was $\alpha$-Al2O3 The PVA-Al(III) complex formed at pH 9 had the lowest relative viscosity the highest Al content of 36% and the smallest particle size of 19${\mu}{\textrm}{m}$ While the pure UO2 pellet appeared with bimodal one. The grain size of the pure UO2 pellet was 7${\mu}{\textrm}{m}$ but that of the PVA-Al(III) complex added UO2 pellet was increased up to 36${\mu}{\textrm}{m}$ The largest grain size was ob-tained when the PVA-Al(III) complex formed at pH9 was added and the PVA-Al(III) complex formed at pH 11 had the greatest effect on increasing pore size.

  • PDF

The Comparison of Sintering Characteristics between the PVA-Al(III) Complex added $UO_2$Pellet and AlOOH added $UO_2$pellet (PVA-Al(III) 착물 첨가 $UO_2$소결체와 AlOOH 첨가 $UO_2$소결체의 소결 특성 비교)

  • Lee, Sin-Yeong;Yu, Ho-Sik;Lee, Seung-Jae;Kim, Hyeong-Su;Bae, Gi-Gwang
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • The sintering characteristics of PVA-Al(III) complex added $UO_2$ pellet and AlOOH added $UO_2$pellet were compared. The major phase of PVA-Al(III) complex and AlOOH decomposed at $1000^{\circ}C$ in $H_2$atmosphere was $\theta-Al_2O_3$. Compared with the apparent density of pure $UO_2$, that of AlOOH added $UO_2$ powder was higher but that of PVA-Al(III) complex was lower. the densification of AlOOH added $UO_2$ pellet was initiated at about $800^{\circ}C$, the densification of PVA-Al(III) complex added $UO_2$ pellet was initiated at about $900^{\circ}C$ respectively. In a view of pore size distribution, the PVA-Al(III) complex added $UO_2$ pellet appeared as monomodal type, whereas the AlOOH added $UO_2$ pellet appeared as bimodal type. The grain size of AlOOH added $UO_2$ pellet was about $13\mu\textrm{m}$ but the grain size of PVA-Al(III) complex added $UO_2$ pellet was increased up to about $36\mu\textrm{m}$.

  • PDF

Characteristic of Al(III) Hydrosis Species at Rapid Mixing Condition (급속흔화조건에서 AI(III) 가수분해종의 분포특성)

  • Jung, Chul-Woo;Son, Jung-Gi;Shon, In-Shik;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by different Al(III) coagulants. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$. increases rapidly. Also, for alum, higher mixing speed favoured Al(III) polymers formation over precipitates of $Al(OH)_{3(s)}$ but for PACl, higher mixing speed formed more precipitates of $Al(OH)_{3(s)}$. At A/D and sweep condition, both $Al(OH)_{3(s)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

The Colorimetric Determination of Al(III) and Cr(III) by Using of Bismark Brown R (Bismark Brown R을 이용한 Al(III) 및 Cr(III)의 비색정량)

  • Sun Duek Kim;Byong Cho Lee;Myon Yong Park
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.270-274
    • /
    • 1981
  • Al(III) and Cr(III) were determined selectively by colorimetry of Bismark Brown R {4,4'[(4-methyl-1,3-phenylene)bis(azo)]-bis(6-methyl-1,3-benzenediamine) dihydrochloride} in the presence of the various cations and anions without the using of any masking agents, but tartrate and citrate ions were interfered. The ligand of Bismark Brown R and complexes of Al(III) and Cr(III) were shown the maximum absorbance at the same wavelength together and both metallic ion were interfered to determine each other, but Al(III) were able to determine after oxidation of Cr(III) to Cr(VI).

  • PDF

Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process (응집공정에서 발생하는 알루미늄 가수분해종 분포특성)

  • Song, Yu-Kyung;Jung, Chul-Woo;Hwangbo, Bong-Hyung;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomeric Al(III), polymeric Al(III), precipitate Al(III) was formed by Al(III) hydrolysis. The method of hydrolyzed Al(III) species characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic species were divided into monomer, polymer, precipitate from the reaction kinetics. And then, the color intensity for monomeric Al(III) was read 3 min after mixing. With standard Al solution containing monomeric Al(III) only, the Al-ferron color intensity slightly increased with until about 3 min. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) was similar to rapid mixing condition, but for raw water, the species of Al(III) hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from Al-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values.

The Effect of PVA-Al(III) Complex on Pore Formation and Grain Growth of $UO_2$ Sintered Pellet (II) (PVA-A(III) 착물이 $Uo_2$ 소결체의 기공형성과 결정립성장에 미치는 영향(II))

  • 이신영;김형수;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.782-790
    • /
    • 1999
  • The compressibility sinterability sintering behaviour and thermal stability of AlOOH added UO2 pellt and PVA-Al(III) complex added UO2 pellet were investigated respectively. Compared with characteristics of AlOOH added UO2 pellet the green density and the sintered density of PVA-Al(III) complex added UO2 pellet were lowered but the grain size and the pore size of that were more increased in accordance with higher compacting pressure. The AlOOH added UO2 pellet had the grain size of about 14${\mu}{\textrm}{m}$ with monomodal pore size distribution while the PVA-Al(III) complex added UO2 pellet had the grain size of about 42 ${\mu}{\textrm}{m}$ with bimodal pore size distribution. The PVA-A(III) complex added UO2 pellet had a similiar open porosity to the AlOOH added UO2 pellet and a lower resintered density change than the AlOOH added UO2 pellet.

  • PDF

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment (정수처리 응집효율 개선을 위한 Al(III)염과 Fe(III)염 응집제의 비교)

  • Han, Seung woo;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.325-331
    • /
    • 2015
  • The experimental results of the characteristics of aluminum based and ferric based coagulants for the Nakdong River water showed that the main hydrolysis species contained in alum and $FeCl_3$ are monomeric species of 98% and 93.3%, respectively. The PACl of r=1.2 produced by the addition of base contained 31.2% of polymeric Al species and the PACl of r=2.2 contained 85.0% of polymeric Al species, as showing more polymeric Al species with increasing r value. Coagulation tests using Al(III) and Fe(III) salts coagulants for the Nakdong River water showed that the coagulation effectiveness of turbidity and organic matter was high in the order of $FeCl_3$ > PACl (r=2.2) > PACl (r=1.2) > alum. $FeCl_3$ has showed better flocculation efficiency than Al(III) salts coagulants. In addition, in case of Al(III) coagulants, the Al(III) coagulants of higher basicity, which contained more polymeric Al species, resulted in better coagulation efficiency for both turbidity and organic matter removed. The optimum pH range for all of the coagulants investigated was around pH 7.0 under the experimental pH range of 4.0~9.5. Especially, the highest basicity PACl (r=2.2) and $FeCl_3$ were considered as more appropriate coagulants for the removal of turbidity in the case of raw water exhibiting higher pH.

A Study of Al(III) Hydrolysis Species Characterization under Various Coagulation Condition (응집 pH와 응집제 종류에 따른 Al(III)가수분해종 특성변화에 대한 연구)

  • Song, Yu-Kyung;Jung, Chul-Woo;Sohn, In-Shik
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.958-967
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomers, polymers and solid precipitates may form. Different Al(III) coagulants (alum and PSOM) show to have different Al(III) species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved AI(III) (monomer and polymer) increases, but for PSOM, precipitates of $Al(OH)_{3(S)}$ increases rapidly. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from AI-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_{3(S)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.