• Title/Summary/Keyword: Al$_2$O$_3$ -SiC

Search Result 1,190, Processing Time 0.028 seconds

Microstructure and Mechanical Properties of the $Al_2O_3-SiC$ Ceramics Produced by Melt Oxidation (용융산화법으로 제조한 $Al_2O_3-SiC$ 세라믹스의 미세구조와 기계적 성질)

  • ;H. W. Hennicke
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1169-1175
    • /
    • 1994
  • Five Al2O3/SiC/metal composites with four different particle sizes of green SiC abrasive grains are grown by the directed oxidation of an commercially available Al-alloy. Oxidation was conducted in air at 100$0^{\circ}C$, 96 hours long. Slip casted SiC-fillers were placed on the alloy or SiC powder deposited up to the required layer thickness. Their microstructures are described and measurements of density, elastic constants, frexural strength, fracture toughness and work of fracture are reported. The results are compared with those of commercial dense sintered Al2O3. The properties of produced materials have a strong relationship to not only the properties of Al2O3, SiC, Al and Si but also to the phase share and phase distribution. The composite materials are dense (0.5% porosity), tough (KIC = 3.4~6.4 MPa{{{{ SQRT { m} }}), strong ({{{{ sigma }}B = 170~345 MPa) and reasonably shrinkage free producible. The reinforcements is attained mainly through the plastic deformation of ductile metal phase.

  • PDF

Role of Buffer Layer in Ba-Ferrite/α-Al2O3/SiO2 Magnetic Thin Films (Ba-페라이트/α-Al2O3/SiO2 자성박막에서 버퍼층의 역할)

  • Cho, Tae-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.283-286
    • /
    • 2006
  • We have studied the role of ${\alpha}-Al_{2}O_{3}$ buffer layer as a diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite $(1900-{\AA}-thick)/SiO_{2}$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_{2}O_{3}$ buffer layer ($110-{\AA}-thick$) in the interface of Ba-ferrite/$SiO_{2}$ thin film. During the annealing of Ba-ferrite/${\alpha}-Al_{2}O_{3}/SiO_{2}$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The magnetic properties, such as saturation magnetization and intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_{2}O_{3}$ buffer layer. Our study suggests that the ${\alpha}-Al_{2}O_{3}$ buffer layer act as a useful interfacial diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films.

A Study on the Transparent Glass-Ceramics On Al2O3-SiO2 System (투명 결정화 유리에 관한 연구 - $Al_2O_3-SiO_2$계에 관하여)

  • 박용완;김용욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.223-231
    • /
    • 1992
  • CaO and ZnO were added to Al2O3-SiO2 binary system respectively as flux, then ZrO2 and TiO2 were applied as nucleating agent to these CaO-Al2O3-SiO2 and ZnO-Al2O3-SiO2 ternary system glass. The transparency could not be kept in CaO-Al2O3-SiO2 system glass, whereas the transparent glass-ceramics were prepared in ZnO-Al2O3-SiO2 system glass containing ZrO2 as the nucleating agent. At this time the optimum heating temperatures for the nucleation and the crystal growth were 78$0^{\circ}C$ and 97$0^{\circ}C$. The sizes of the precipitated crystals in the transparent glass-ceramics were below 0.1 ${\mu}{\textrm}{m}$, and their light transmissibilities were more than 80%.

  • PDF

Impact Resistance of Al2O3-SiC Composites Against High Velocity Copper Jet (고속 구리제트에 대한 알루미나-탄화규소 복합재료의 충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.660-665
    • /
    • 2006
  • The mechanical properties of $Al_2O_3$-SiC composites manufactured with adding various amount and size of SiC particles have been measured and analyzed. Generally, the elastic modulus of the composites shows about 50% less than that of PL-8 (45 wt% $Al_2O_3$-51 wt% $SiO_2$-4 wt% other oxides), but the flexural strength is similar with each other. The impact resistance property of $Al_2O_3$-SiC composite against high velocity copper jet was lower than that of PL-8 when SiC particles of approximately 3 $\mu$m diameter was added to. It is caused probably due to the micro-pores made by oxidation of SiC particles. However, in the case of the less-weighted $Al_2O_3$-SiC composite adding to 10 wt% SiC with average diameter of 10 $\mu$m and sintering at 1200$^{\circ}C$, the impact resistance property was improved up to 37 percent compared with that of PL-8.

Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Thermal Residual Stress Relaxation Behavior of Alumina/SiC Nanocomposites (Alumina/SiC 나노복합재료에서의 잔류 열응력 완화거동에 관한 연구)

  • Choa, Y.H.;Niihara, K.;Ohji, T.;Singh, J.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.11-11
    • /
    • 2002
  • Plastic deformation was observed by TEM around the intragranular SiC particles in the $Al_2O_3$ matrix for $Al_2O_3/SiC$ nanocomposite system. The dislocations are generated at selected planes and there is a tendency for the dislocations to form a subgrain boundary structure with low-angel grain boundaries and networks. In this study, dislocation generated in the $Al_2O_3$ matrix during cooling down from sintering temperatures by the highly localized thermal stresses within and/or around SiC particles caused from the thermal expansion mismatch between $Al_2O_3$ matrix and SiC particle was observed. In monolithic $Al_2O_3$ and $Al_2O_3/SiC$ microcomposite system. These phenomena is closely related to the plastic relaxation of the elastic stress and strain energy associated with both thermal misfitting inclusions and creep behaviors. The plastic relaxation behavior was explained by combination of yield stress and internal stress.

  • PDF

Synthesis of Powder of the System Si-Al-O-N from Alkoxides I. Synthesis of Si3N4 and $\beta$-Sialon Ultrafine Powders from Alkoxides (알콕사이드로부터 Si-Al-O-N계 분말합성 I. 알콕사이드로부터 Si3N4와 $\beta$-Sialon 초미분말 합성)

  • 이홍림;유영창
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.23-32
    • /
    • 1987
  • Synthesis of high purity ultrafine Si3N4 and ${\beta}$-Sialon powders was investigated via the simultaneous reduction and nitriding of amorphous SiO2, SiO2-Al2O3 system prepaerd by hydrolysis of alkoxides, using carbonablack as a reducing agent. In Si(OC2H5)4-C2H5 OH-H2 O-NH4OH system, hydrolysis rate increased with increasing reaction temperature and pH. Pure ${\alpha}$-Si3N4 was formed at 1350$^{\circ}C$ for 5 hrs in N2 atmosphere. In Si(OC2H5)4-Al(OC3H7)3-C6H6-H2 O-NH4OH system, weight loss increased as Si/Al ratio decreased. Single phase ${\beta}$-Sialon consisted of Si/Al=2 was formed at 1350$^{\circ}C$ in N2 and minor phases of ${\alpha}$-Si3N4, AIN, and X-phase were existed besides theSialon phase at other Si/Al ratios. The Si3N4 and Sialon powders synthesized from alkoxides consisted of uniform find particles of 0.05-0.2$\mu\textrm{m}$ in diameter, respectively.

  • PDF

Removal of SF6 over Silicon Carbide with Aluminium Oxide by Microwave Irradiation (마이크로웨이브 조사에 따른 산화알루미늄이 함유된 실리콘카바이드의 SF6 제거)

  • Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.240-246
    • /
    • 2013
  • $SF_6$ is the most important greenhouse gas with the highest GWP (global warming potential). The $SF_6$ decomposition study was performed with silicon carbide with aluminium oxide by microwave irradiation. DRE (Decomposition and Removal Efficiencie) of $SF_6$ were evaluated by GC-TCD unit using 3,000 ppm $SF_6$ gas. DRE of $SF_6$ was increased by $Al_2O_3$ contents to 10~30 wt%, otherwise $Al_2O_3$ content of 40~50 wt% was decreased. DRE of $SF_6$ up to 99.99% have been achieved in SiC-$Al_2O_3$ (20 wt%) and SiC-$Al_2O_3$ (30 wt%) above $900^{\circ}C$. Also, the DRE of SiC-$Al_2O_3$ (30 wt%) at $700^{\circ}C$ showed 96.72%. In addition to consideration microwave input energy and $Al_2O_3$ content, SiC-$Al_2O_3$ (30 wt%) can be suggested the best material to control $SF_6$. The results of this study suggest it is important to control content of $Al_2O_3$ in SiC for decomposition of $SF_6$ with microwave energy.

High Temperature Oxidation of Ti3Al/SiCp Composites in Oxygen

  • An, Sang-Woo;Kim, Young-Jig;Park, Sang-Whan;Lee, Dong-Bok
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • In order to improve the oxidation resistance of $Ti_3Al$, Ti-25at.%Al composites containing dispersed particles of 15wt.%SiC were prepared by a tubular mixing-spark plasma sintering method. The sintered composites had $Ti_3Al$, SiC, $Ti_5Si_3$ and TiC. The presence of $Ti_5Si_3$ and TiC indicates that some of SiC particles reacted with Ti to from more stable phases. From oxidation tests at 800, 900 and $1000^{\circ}C$ under 1 atm of pure oxygen, it was found that the oxidation rate of Ti3Al was effectively reduced by the addition of SiC. The scale was primarily composed of an outer $TiO_2$ layer having some $Al_2O_3 $islands, an intermediate relatively thick $Al_2O_3 $ layer, and an inner $TiO_2+Al_2O_3+SiO_2$ mixed layer. Beneath the scale, Kirkendall voids were seen.

  • PDF

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.