• Title/Summary/Keyword: Al$Mg_2Si$

Search Result 745, Processing Time 0.022 seconds

Banded and Massive Iron Mineralization in Chungju Mine(I): Geology and Ore Petrography of Iron Ore Deposits (충주지역 호상 및 괴상 철광상의 성인에 관한 연구(I) : 지질 및 광석의 산출특성)

  • Kim, Gun-Soo;Park, Maeng-Eon;Enjoji, Mamoru
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.523-535
    • /
    • 1994
  • The strata-bound type iron ore bodies in the Chungju mine are interbedded with metamorphic rocks which are intruded by Mesozoic granitic rocks. The iron ore deposit occurs as layer or lens shape which are concordant with the metamorphic rocks. The iron ore is classified into banded and massive types based on the mode of texture and occurrence. Grain size and iron-oxides tend to become coarser toward massive ore than banded ore. Banded ores commonly contain internal layers defined by alternating magnetite- rich, hematite-rich, magnetite-hematite, and quartz-rich mesobands. The banded iron ore consists of hematite, magnetite, quartz, feldspar, and minor amounts of biotite, muscovite, chlorite, carbonates, epidote, allanite, and zircon. Massive ores which are characterized by high magnetite content occur in contact of granitic rocks. The massive iron ores consist mostly of magnetite and quartz, with minor amounts of hematite, pyrite, microcline, biotite, muscovite, chlorite, carbonates, epidote, allanite and zircon. Magnetite from banded and massive ores is almost pure $Fe_3O_4$ in composition, including 0.14 to 0.27 wt.% MnO and 0.10 to 0.15 wt.% MnO, respectively. Hematite of the ore contains 0.87 to 1.27 wt.% $TiO_2$ in banded ore and 3.44 to 6.96 wt.% $TiO_2$ in massive ore, respectively. Biotite shows a little compositional variation depending on ore types. Biotite of the banded ore has lower FeO, $TiO_2$ and $Al_2O_3$, and higher MgO and $SiO_2$ than the massive ore. The modes of occurrence and petrography of ore implies that massive ores might have been formed either under more reducing environments or higher temperature condition than banded ore. Banded ores might represent early episode of iron enrichment due to regional metamorphism. Massive ores might be related to the contact metamorphism resulting from late granitic intrusion.

  • PDF

A Geochemical Study on the Behaviors of Major and Trace Elements in the Ulsan Granite and Its Contact Serpentinite (울산화강암 및 인접 사문암 중 주/미량 원소의 거동에 관한 지화학적 연구)

  • Lee, Jae Yeong;Lee, In Ho
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 1995
  • Geochemical characteristics of iron-related Ulsan granite was studied in comparison with the Cretaceous granitoids from the metallogenic provinces of copper, lead-zinc and lead-zinc/molybdenum in the Gyeongsang Basin, and the variation of cheminal compositions at the Ulsan granite/serpentinite contact was investigated. Ulsan granite is plotted in the regions of granite and granodiorite of Streckeisen's diagram. It shows differentiation trend of calc-alkali magma, and the magmatic evolution from granodiorite to granite is consistant with the general crystallization path of the Cretaceous the granitoids in Gyeongsang Basin. Differentiation index(D.I.) of Ulsan granite is 86~95, which is higher than those of Jindong granites (D.I.=45~70) and Onjongri granites (D.I.=67~84), and there are differences in the content of some major and trace elements between Ulsan granite and other Cretaceous granitoids. At the Ulsan granite/serpentinite contact $SiO_2$, $K_2O$, $Na_2O$, $Al_2O_3$, Rb, Sr, Ba which are abundant in Ulsan granite decrease toward serpentinite, while T.Fe, MgO, Ni, Cr which are abundant in serpentinite decrease toward Ulsan granite. Therefore, the geochemical characteristics of Ulsan granite is applicable to distinguish iron province from different metallogenic provinces where other Cretaceous granitoids occur in the Gyeongsang Basin, and it is possible to find serpentinite which was intruded by granite on the basis of chemical variations.

  • PDF

Material Characteristics and Provenance Interpretation for Chloritic Beads from the Boseong Geoseokri and Haenam Buntori Sites, Korea (보성 거석리 및 해남 분토리 유적 출토 녹니석제 구슬의 재질특성과 원산지 해석)

  • Kim, Ji-Young;Lee, Chan-Hee;Kim, Jin-Young
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.25-37
    • /
    • 2008
  • This study focuses on identification of mineralogical and geochemical characteristics and interpretation of raw material sources for prehistoric chlorite beads excavated from Geoseokri site in Boseong and Buntori site in Haenam, Korea. These prehistoric beads consist of three grayish blue ring-shaped beads, one dark green tubular bead and one greenish black tubular bead that show acicular-columnar and fibrous microtexture. The beads are composed of $SiO_2$, $Al_2O_3$, MgO and FeO as majors and a trace amount of $K_2O$, CaO and Na_2O$. Mineral species is mostly chlorite with a small amount of quartz and feldspar. Quantitative analysis indicates that the grayish blue ring-shaped beads and the dark green tubular bead belong to clinochlore and the greenish black tubular bead does to the boundary between clinochlore and sheridantie. Chlorite is a hydrous phyllosilicate mineral and it shows various microtexture of acicular, sheeted, earthy, granular andfibrous shapes. As its hardness is 2, chlorite is easily engraved due to its softness. It has aesthetic worthy as it shows green, black and greenish gray colors and pearly to greasy luster as well. These factors would lead to the extensive use of chloritic beads as ornaments from prehistoric times. Though the mineral sources of the chlorite beads can be found in central western region of Chungnam and Iwon of Hamnam, those areas are too distant from the two relic sites. Instead, chlorite ores commonly occur as altered products in wall rock alteration zone of every hydrothermal deposit. Therefore, it is probable that raw materials of chlorite were supplied from neighboring hydrothermal environment rather than far deposits. The result needs further study to verify raw material provenance interpretation, supply, manufacture and distribution on the basis of archaeological points of view.

  • PDF

Geochemical Enrichment and Migration of Environmental Toxic Elements in Stream Sediments and Soils from the Samkwang Au-Ag Mine Area, Korea (삼광 금-은광산 일대의 하상퇴적물과 토양내 함유된 독성원소의 지구화학적 부화와 이동)

  • Lee, Chan Hee;Lee, Byun Koo;Yoo, Bong-Cheal;Cho, Aeran
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 1998
  • Dispersion, migration and enrichment of environmental toxic elements from the Samkwang Au-Ag mine area were investigated based upon major, minor and rare earth element geochemistry. The Samkwang mine area composed mainly of Precambrian granitic gneiss. The mine had been mined for gold and silver, but closed in 1996. According to the X-ray powder diffraction, mineral composition of stream sediments and soils were partly variable mineralogy, which are composed of quartz, orthoclase, plagioclase, amphibole, muscovite, biotite and chlorite, respectively. Major element variations of the host granitic gneiss, stream sediments and soils of mining and non-mining drainage, indicate that those compositions are decrese $Al_2O_3$, $Fe_2O_3$, MgO, $TiO_2$, $P_2O_5$ and LOI with increasing $SiO_2$ respectively. Average compositional ranges (ppm) of minor and/or environmental toxic elements within those samples are revealed as As=<2-4500, Cd=<1-24, Cu=6-117, Sb=1-29, Pb=17-1377 and Zn=32-938, which are extremely high concentrations of sediments from the mining drainage (As=2006, Cd=l1, Cu=71, Pb=587 and Zn=481 ppm, respectively) than concentrations of the other samples and host granitic gneiss. Major elements (average enrichment index=6.53) in all samples are mostly enriched, excepting $SiO_2$, $Na_2O$ and $K_2O$, normalized by composition of host granitic gneiss. Rare earth element (average enrichment index=2.34) are enriched with the sediments from the mining drainage. Minor and/or environmental toxic elements within all samples on the basis of host rock were strongly enriched of all elements (especially As, Br, Cu, Pb and Zn), excepting Ba, Cr, Rb and Sr. Average enrichment index of trace elements in all samples is 15.55 (sediments of mining drainage=37.33). Potentially toxic elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) of the samples revealed that average enrichment index is 46.10 (sediments of mining drainage=80.20, sediments of nonmining drainage=5.35, sediments of confluent drainage=20.22, subsurface soils of mining drainage=7.97 and subsurface soils of non-mining drainage=4.15). Sediments and soils of highly concentrated toxic elements are contained some pyrite, arsenopyrite, sphalerite, galena and goethite.

  • PDF

Geochemistry of the Kwanaksan alkali feldspar granite: A-type granite\ulcorner (관악산 알칼리 장석 화강암의 지구화학 : A-형 화강암\ulcorner)

  • S-T.Kwon;K.B. Shin;H.K. Park;S.A. Mertzman
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.31-48
    • /
    • 1995
  • The Jurassic Kwanaksan stock, so far known to be composed of biotite granite only, has the mineral assemblage of quartz+K-feldspar+plagioclase+biotite${\pm}$gernet. The lithology of the stock is classified as alkali feldspar granite by their mode and plagioclase compositions (An<5). Subsolvus feldspars, rather early crystallization of biotite, and shallow emplacement depth estimated from Q-Ab-Or diagram suggest hydrous nature of the magma, which contrasts with anhydrous A-type like geochemistry described below. Major and trace element compositions of the Kwanaksan stock are distinct from those of the adjacent Seoul batholith, suggesting a genetic difference between the two, The Kwanaksan stock shows geochemical characteristics similar to A-type granite in contrast to most other Mesozoic granites in Korea, in that it has high $SiO_2$(73~78wt%), $Na_2O+K_2O$, Ga(27~47 ppm). Nb(22~40 ppm), Y(48~95 ppm), Fe/Mg and Ga/Al, and low CaO(<0.51 wt%). Ba (8~75 ppm) and Sr(2~23 ppm). However, it has lower Zr and LREE and higher Rb(384~796 ppm) than typical A-type granite. LREE-depleted rare earth element pattern with strong negative Eu anomaly of previous studies is reinterpreted as representing source magma characteristics. The residual material during partial melting is not compatible with pyroxenes, amphibole or garnet, while significant amount of plagioclase is required. Similarity of geochemistry of the Kwanaksan stock to A-type granite suggests the origin of the stock has a chose relationship with that of A-type granite. These observations lead us to propose that the Kwanaksan stock was formed by partial melting of felsic source rock.

  • PDF

Removal of Red Tide Organisms -2. Flocculation of Red Tide Organisms by Using Loess- (적조생물의 구제 -2. 황토에 의한 적조생물의 응집제거-)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2000
  • The objective of this study was to examine the physicochemical characteristics of coagulation reaction between loess and red tide organisms (RTO) and its feasibility, in developing a technology for the removal of RTO bloom in coastal sea. The physicochemical characteristics of loess were examined for a particle size distribution, surface characteristics by scanning electron microscope, zeta potential, and alkalinity and pH variations in sea water. Two kinds of RTO that were used in this study, Cylindrothen closterium and Skeietonema costatum, were sampled in Masan bay and were cultured in laboratory. Coagulation experiments were conducted using various concentrations of loess, RTO, and a jar tester. The supernatant and RTO culture solution were analyzed for pH, alkalinity, RTO cell number. A negative zeta potential of loess increased with increasing pH at $10^(-3)M$ NaCl solution and had -71.3 mV at pH 9.36. Loess had a positive zeta potential of +1,8 mV at pH 1.98, which resulted in a characteristic of material having an amphoteric surface charge. In NaCl and $CaCl_2$, solutions, loess had a decreasing negative zeta potential with increasing $Na^+\;and\;Ca^(+2)$ ion concentration and then didn't result in a charge reversal due to not occurring specific adsorption for $Na^+$ ion while resulted in a charge reversal due to occurring specific adsorption for $Ca^(+2)$ ion. In sea water, loess and RTO showed the similar zeta potential values of -112,1 and -9.2 mV, respectively and sea sand powder showed the highest zeta potential value of -25.7 mV in the clays. EDLs (electrical double-layers) of loess and RTO were extremely compressed due to high concentration of salts included in sea water, As a result, there didn't almost exist EDL repulsive force between loess and RTO approaching each other and then LVDW (London-yan der Waals) attractive force was always larger than EDL repulsive force to easily form a floe. Removal rates of RTO exponentially increased with increasing a loess concentration. The removal rates steeply increased until $800 mg/l$ of loess, and reached $100{\%}$ at 6,400 mg/l of loess. Removal rates of RTO exponentially increased with increasing a G-value. This indicated that mixing (i.e., collision among particles) was very important for a coagulation reaction. Loess showed the highest RTO removal rates in the clays.

  • PDF

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.

Chemical Properties of Indoor Individual Particles Collected at the Daily Behavior Spaces of a Factory Worker

  • Ma, Chang-Jin;Kang, Gong-Unn;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.122-130
    • /
    • 2017
  • The main purpose of the study was to clarify the properties of individual particles collected at each behavior space of a factory worker. The samplings of size-segregated ($PM_{2.1-1.1}$ and $PM_{4.7-3.3}$) indoor particles were conducted at three different behavior spaces of a factory worker who is engaged in an auto parts manufacturing plant (i.e., his home, his work place in factory, and his favorite restaurant). Elemental specification (i.e., relative elemental content and distribution in and/or on individual particles) was performed by a micro-PIXE system. Every element detected from the coarse particulate matters of home was classified into three groups, i.e., a group of high net-counts (Na, Al, and Si), a group of intermediate net-counts (Mg, S, Cl, K, and Ca), and a group of minor trace elements (P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb). The results of EF for $PM_{4.7-3.3}$ in home indicated that several heavy metals were generated from the sources within the house itself. An exceptional feature shown in the individual particles in workplace is that Cr, Mn, and Co were clearly detected in both fine and coarse particles. Cluster analysis suggested that the individual coarse particles ($PM_{4.7-3.3}$) collected at the indoor of factory were chemically heterogeneous and they modified with sea-salt, mineral, and artificially derived elements. The principal components in individual coarse particles collected at restaurant were sea-salt and mineral without mixing with harmful trace elements like chromium and manganese. Compared to the indoor fine particles of home and restaurant, many elements, especially, Cl, Na, Cr, Mn, Pb, and Zn showed overwhelmingly high net-counts in those of factory.

Effects of Dried Days on Properties of Seawater and Freshwater Flooded CSPE in NPPs

  • Jeon, Hwang-Hyun;Lee, Jeong-U;Jeon, Jun-Soo;Lee, Seung-Hoon;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1162-1168
    • /
    • 2015
  • Accelerated thermal aging of chlorosulfonated polyethylene (CSPE) was performed for 0 days, 80.82 days, and 161.63 days at 100℃, which is equivalent to 0 y, 40 y, and 80 y of aging, respectively, at 50℃. After freshwater flooding, the volume electrical resistivity of CSPE was highest after 180 days of drying, and its insulating property recovered when dried for more than 300 days. The dielectric constant of the CSPE was not measured after seawater flooding. The dielectric constant of the accelerated thermally aged CSPE was higher after freshwater flooding than that before seawater flooding. The bright, open pores of CSPE were converted into dark, closed pores after seawater flooding, and the dark, closed pores of the accelerated thermally aged CSPE samples were partly converted into bright, open pores after freshwater flooding. The apparent density of CSPE increased slightly whereas its elongation at break (EAB) decreased until 80 y of accelerated thermal aging before seawater flooding. The peak binding energies of oxygen in the non-accelerated and accelerated thermally aged CSPE for 40 y and 80 y were shifted by more than 1.0 eV after seawater and freshwater flooding. The CH2 content in the non-accelerated and accelerated thermally aged CSPE for 40 y and 80 y after seawater flooding for 5 days was lower than that before seawater flooding whereas atoms such as Cl, O, Pb, Al, Si, Sb, and S that are related to conducting ions such as Na+, Cl-, Mg2+, SO4 2-, and K+ were relatively increased.

Fracture Toughness and Slinding Wear Properties of ABOw/AC4CH by Binder Additives (ABOw/AC4CH의 바인더 종류에 따른 파괴인성 및 미끄럼마모 특성)

  • Park, Won-Jo;Jung, Jae-Wook;Choi, Yong-Bum;Lee, Kwung-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.373-378
    • /
    • 2002
  • Metal matrix composites have a great interest in recent years because high specific strength, high specific stiffness characteristics, and application ranges of the composites are extend to variety industry. In this paper, an investigation was performed on the plane strain fracture toughness and slinding wear properties of AC4CH alloy(Al-Si-Mg line) reinforced with 20wt% aluminum borate whisker expect one, which contained a inorganic binder($TiO_2$). the binder led to the formation of strengthen the whisker each other. The test of fracture toughness was using CT(half size) specimen of thickness 12.5mm, width 25mm. and test of slinding wear of using tribo a pin-on-disk machine and lubricant is used without paraffine 8.2CST at room temperature. As results, Fracture toughness $K_{IC}$ is $8.7MPa-m^{05}$ for ABOw/AC4CH, $9.28MPa-m^{05}$ for ABOw/AC4CH added $TiO_2$. but AC4CH alloy was violated the critical stipulated by ASTM standard for valid measurement of $K_{IC}$. In case of, it was performed $J_{IC}$ test instead of $K_{IC}$ based on ASTM E 1820.

  • PDF