• 제목/요약/키워드: Akt1 kinase

검색결과 341건 처리시간 0.035초

Dithiolo-thione 계열 유도체 SWU-20009의 Akt활성 저해 효과 (Inhibitory Effects of Dithiolo-thione Derivative SWU-20009 on Akt Activity)

  • 고종희;연승우;이홍섭;김태용;노동윤;신경순;홍순광;강상순
    • 약학회지
    • /
    • 제48권2호
    • /
    • pp.105-110
    • /
    • 2004
  • Akt (or Protein Kinase B; PKB) is a serine/threonine kinase and is activated by phosphoinositide 3-kinase (PI3K) pathway. Recent evidence indicates that the abnormal activities or expression of Akt is closely associated with cancer, diabetes and neuro-degenerative diseases. These findings mean that Akt is likely to be a new therapeutic target for the treatment of disease. Here, we screened the effects of dithiolo-dithione derivatives such as SWU-20004, SWU-20009 and SWU-20025 on Akt activities. Among these compounds, only SWU-20009 (2-Thioxo-[1,3]dithiolo[4,5- $\beta$][1,4]dithiine-5,6-dicarboxylic acid dimethyl ester) inhibited the growth of KATOIII cell at micromolar range of concentration. Further investigation also revealed that SWU-20009 inhibited cellular Akt activity and induced apoptotic cell death.

Membrane associated guanylate kinase inverted-3의 AKT signaling을 통한 enterovirus replication 조절 (Membrane-associated Guanylate Kinase Inverted-3 Modulates Enterovirus Replication through AKT Signaling Activation)

  • 박진호;남궁예나;임병관
    • 생명과학회지
    • /
    • 제26권10호
    • /
    • pp.1182-1188
    • /
    • 2016
  • Membrane associated guanylate kinase inverted-3 (MAGI-3)는 세포-세포 연접의 형성을 유도하는 막단백질인 membrane associated guanylate kinases (MAGUKs)의 한 종류 단백질로 140 kDa 크기를 가진다. MAGI-3는 PTEN/MMAC와 함께 협력하여 AKT/PKB의 kinase 활성을 조절하거나 MAPKs 신호전달경로로 ERK 활성을 조절로 한다. Coxsackievirus B3 (CVB3)는 가장 일반적으로 감염된 심근 세포 사멸으로 인한 바이러스성 심근염을 일으키는 enterovirus에 속하는 인간 병원체이다. 이전 연구에서 protein kinase B (PKB, 또는 AKT)와 extracellular signal-regulated kinases 1/2 (ERK1/2)의 활성은 HeLa 세포에서 CVB3 복제를 위해 필수적임이 밝혀졌다. 본 연구에서 enterovirus 복제와 AKT 신호 활성조절에서 MAGI-3의 역할을 검증하였다. MAGI-3-Flag의 발현은 CVB3 감염 후에 AKT 신호 활성과 viral capsid protein VP1의 발현을 유도하였으며 이는 MAGI-3에 의한 enterovirus 증식 조절을 보여주었다. AKT 신호는 MAGI-3 발현에 의해 enterovirus 감염과 함께 유의하게 증가하고 이것은 감염 바이러스의 증식을 활발하게 유도함을 확인하였다. 이 결과는 MAGI-3의 발현은 AKT와 ERK의 활성이 증가하고, 더 나아가 바이러스 증식과 연관이 있다는 것을 입증한다. MAGI-3는 아마도 AKT 신호 조절을 통해 enterovirus 증식 조절에 중요한 역할을 할 것으로 생각된다.

1,3,4-Thiadiazole 유도체의 합성 및 Akt1 카이네이즈 저해 활성 (Synthesis and Akt1 Kinase Inhibitory Activity of 1,3,4-Thiadiazole Derivatives)

  • 유경호;김세영;류재천
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.370-379
    • /
    • 2008
  • Akt, a serine/threonine protein kinase as a viral oncogene, is a critical regulator of PI3K-mediated cell proliferation and survival. On translocation, Akt is phosphorylated and activated, ultimately resulting in stimulation of cell growth and survival. As a part of our program toward the novel Akt1 inhibitors with potent activity over PI3K signaling pathway, we found primary hit compound 2 with an $IC_{50}$ value of $620\mu}M$ from protein kinase focused library. Based on the structural features of 2, new 1,3,4-thiadiazole derivatives were designed by the introduction of aromatic and heteroaromatic moieties onto thiadiazole nucleus. In this work, a series of 1,3,4-thiadiazole derivatives 1a-1 were synthesized and evaluated for Akt1 inhibitory activity.

Trans-anethole Suppresses C2C12 Myoblast Differentiation

  • Mi-Ran Lee
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.190-200
    • /
    • 2023
  • Skeletal muscle, essential for metabolism, thermoregulation, and immunity, undergoes myogenic differentiation that results in myotube formation. Trans-anethole (TA), the major constituent in essential oil produced by anise, star anise, and fennel, whose function in skeletal muscle has not yet been elucidated. Therefore, we investigated whether TA influenced muscle differentiation in mouse C2C12 myoblasts. Cells were induced to differentiate using a differentiation medium with or without TA (50 or 200 mg/mL) daily for 5 days. We measured myotube length and diameter after differentiation days 1, 3, and 5 and analyzed the expression of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) using quantitative real-time PCR. Additionally, we observed the expression of total protein kinase B (Akt) and phosphorylated Akt (p-Akt) using western blotting. Our data showed that TA significantly induced the formation of smaller and thinner myotubes and reduced the myogenic factor expression. Furthermore, the atrogin-1 and MuRF-1 expression markedly increased by TA. Consistent with these findings, TA significantly decreased the expression of total Akt and p-Akt. Taken together, these results indicate that TA inhibits myogenic differentiation of C2C12 cells via reduction of both total Akt and p-Akt. Our findings may provide valuable insights into the impact of PAA on individuals at risk of muscle atrophy.

Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway

  • Xin, Chun;Quan, Hui;Kim, Joung-Min;Hur, Young-Hoe;Shin, Jae-Yun;Bae, Hong-Beom;Choi, Jeong-Il
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.394-401
    • /
    • 2019
  • Background: Ginsenoside Rb1, a triterpene saponin, is derived from the Panax ginseng root and has potent antiinflammatory activity. In this study, we determined if Rb1 can increase macrophage phagocytosis and elucidated the underlying mechanisms. Methods: To measure macrophage phagocytosis, mouse peritoneal macrophages or RAW 264.7 cells were cultured with fluorescein isothiocyanate-conjugated Escherichia coli, and the phagocytic index was determined by flow cytometry. Western blot analyses were performed. Results: Ginsenoside Rb1 increased macrophage phagocytosis and phosphorylation of p38 mitogenactivated protein kinase (MAPK), but inhibition of p38 MAPK activity with SB203580 decreased the phagocytic ability of macrophages. Rb1 also increased Akt phosphorylation, which was suppressed by LY294002, a phosphoinositide 3-kinase inhibitor. Rb1-induced Akt phosphorylation was inhibited by SB203580, (5Z)-7-oxozeaenol, and small-interfering RNA (siRNA)-mediated knockdown of $p38{\alpha}$ MAPK in macrophages. However, Rb1-induced p38 MAPK phosphorylation was not blocked by LY294002 or siRNA-mediated knockdown of Akt. The inhibition of Akt activation with siRNA or LY294002 also inhibited the Rb1-induced increase in phagocytosis. Rb1 increased macrophage phagocytosis of IgG-opsonized beads but not unopsonized beads. The phosphorylation of p21 activated kinase 1/2 and actin polymerization induced by IgG-opsonized beads and Rb1 were inhibited by SB203580 and LY294002. Intraperitoneal injection of Rb1 increased phosphorylation of p38 MAPK and Akt and the phagocytosis of bacteria in bronchoalveolar cells. Conclusion: These results suggest that ginsenoside Rb1 enhances the phagocytic capacity of macrophages for bacteria via activation of the p38/Akt pathway. Rb1 may be a useful pharmacological adjuvant for the treatment of bacterial infections in clinically relevant conditions.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

PI3-Kinase and PDK-1 Regulate HDAC1-mediated Transcriptional Repression of Transcription Factor NF-κB

  • Choi, Yong Seok;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.241-246
    • /
    • 2005
  • PDK-1 activates PI3-kinase/Akt signaling and regulates fundamental cellular functions, such as growth and survival. NF-${\kappa}B$ is involved in the induction of a variety of cellular genes affecting immunity, inflammation and the resistance to apoptosis induced by some anti-cancer drugs. Even though the crucial involvement of the PI3-kinase/Akt pathway in the anti-apoptotic activation of NF-${\kappa}B$ is well known, the exact role of PDK-1 as well as PI3-kinase/Akt in NF-vactivation is not understood. Here we demonstrate that PDK-1 plays a pivotal role in transcriptional activation of NF-${\kappa}B$ by dissociating the transcriptional co-repressor HDAC1 from the p65 subunit of NF-${\kappa}B$. The association of CBP with p65 was not directly modulated by PDK-1 or by PI3-kinase. Etoposide activated NF-${\kappa}B$ through PI3-kinase/Akt, and the transcription activation domain (TAD) of p65 was further activated by wild-type PDK-1. Overexpression of a dominant negative PDK-1 mutant decreased etoposide-induced NF-${\kappa}B$ transcription and further down-regulated the ectopic HDAC1-mediated decrease in NF-${\kappa}B$ transcriptional activity. Thus activation of PDK-1 relieves the HDAC1-mediated repression of NF-${\kappa}B$ that may be related to basal as well as activated transcription by NF-${\kappa}B$. This effect may also explain the role of the PI3-kinase/PDK-1 pathway in the anti-apoptotic function of NF-${\kappa}B$ associated with the chemoresistance of cancer cells.

3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로의 활성화를 통한 루페올의 포도당 흡수촉진 효과 (Facilitation of Glucose Uptake by Lupeol through the Activation of the PI3K/AKT and AMPK Dependent Pathways in 3T3-L1 Adipocytes)

  • 이현아;한지숙
    • 생명과학회지
    • /
    • 제32권2호
    • /
    • pp.86-93
    • /
    • 2022
  • Lupeol은 pentacyclic triterpene의 일종으로 다양한 질병에 약리 효과가 있는 것으로 보고되어 있으나, lupeol이 포도당 흡수에 미치는 영향은 아직 보고된 바 없다. 본 연구에서 3T3-L1 지방세포에서 포도당 흡수에 대한 lupeol의 효과를 조사하였다. 그 결과, Lupeol은 3T3-L1 지방세포에서 GLUT4를 원형질막으로 이동시켜 포도당 흡수를 촉진하였으며, 이는 PI3K/AKT 및 AMPK 경로의 활성화와 관련되어 있었다. PI3K/AKT 경로에서 lupeol은 PI3K를 활성화시키는 insulin receptor substrate 1의 인산화와 AKT의 인산화를 촉진하지만 비정형 단백질 키나아제 C isoforms ζ 및 λ의 인산화는 촉진하지 않았다. 반면, lupeol은 5 'AMP-activated protein kinase의 인산화를 촉진하였고, Lupeol의 의한 AMPK의 활성화는 원형질막-GLUT4의 발현과 세포내 포도당 흡수를 증가시키는 것으로 확인되었다. 3T3-L1 지방세포에서 lupeol에 의한 포도당 흡수 효과는 PI3K 억제제인 wortmannin 및 AMPK 억제제인 Compound C에 의해 억제됨을 통해 확인하였다. 본 연구 결과는 lupeol이 3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로를 통해 원형질막 GLUT4의 발현을 자극함으로써 인슐린 감수성을 증가시켜 포도당 흡수를 촉진할 수 있음을 제시하고 있다.

Akt: Versatile Mediator of Cell Survival and Beyond

  • Kim, Do-Hoon;Chung, Jong-Kyeong
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.106-115
    • /
    • 2002
  • The serine/threonine kinase Akt has been intensely studied for its role in growth factor-mediated cell survival for the past 5 years. On the other hand, the ongoing research effort has recently uncovered novel regulatory mechanisms and downstream effectors of Akt that demonstrate the involvement of Akt in other cellular functions such as cell cycle progression, angiogenesis, and cancer cell invasion/metastasis. Furthermore, recent studies using whole model organisms suggest additional roles for Akt in important diseases such as aging and diabetes. The following review addresses these recent advances in the understanding of Akt function.

A77 1726 Inhibit NO-induced Apoptosis via PI-3K/AKT Signaling Pathway in Rabbit Articular Chondrocyte

  • ;김송자
    • 대한의생명과학회지
    • /
    • 제15권1호
    • /
    • pp.61-66
    • /
    • 2009
  • Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis (RA). Leflunomide known as a regulator of iNOS synthesis which largely decreases NO production in diverse cell type. However, the effect of leflunomide on chondrocyte is still poorly understood. In our previous studies, we have shown that direct production of Nitric oxide (NO) by treating chondrocytes with NO donor, sodium nitroprusside (SNP), causes apoptosis via p38 mitogen-activated protein kinase in association with elevation of p53 protein level, caspase-3 activation. In this study, we characterized the molecular mechanism by which A77 1726 inhibit apoptosis. We found that A77 1726 inhibit NO-induced apoptosis as determined by MTT (Thiazolyl Blue Tetrazolium Bromide) assay and DNA fragmentation. The inhibition of apoptosis by A77 1726 was accompanied by increased PI-3 kinase and AKT activities. So, inhibition of phosphatidylinositol (PI)-3kinase with LY294002 rescued apoptosis. Triciribine, the specific inhibitor of AKT, also abolished anti-apoptotic effect. Our results indicate that A77 1726, the active metabolite of leflunomide, mediates NO-induced apoptosis in chondrocytes by modulating up-regulation of PI-3 kinase and AKT.

  • PDF