• Title/Summary/Keyword: Akt1

검색결과 767건 처리시간 0.025초

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Choi, Won Jun
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.308-313
    • /
    • 2014
  • Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

Insulin receptor substrate 2: a bridge between Hippo and AKT pathways

  • Jeong, Sun-Hye;Lim, Dae-Sik
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.209-210
    • /
    • 2018
  • NAFLD induces the development of advanced liver diseases such as NASH and liver cancer. Therefore, understanding the mechanism of NAFLD development is critical for its prevention and treatment. Ablation of PTEN or Hippo pathway components induces liver cancer in a murine model by hyperactive AKT or YAP/TAZ, respectively. Although the regulation of these two pathways occurs in the same hepatocyte, the details of crosstalk between Hippo-YAP/TAZ and PTEN-AKT pathways in liver homeostasis and tumorigenesis still remain unclear. Here, we found that depletion of both PTEN and SAV1 in liver promotes spontaneous NAFLD and liver cancer through hyperactive AKT via YAP/TAZ-mediated up-regulation of IRS2 transcription. Conversely, NAFLD is rescued by both ablation of YAP/TAZ and activation of the Hippo pathway. Furthermore, human HCC patients with NAFLD showed strong correlation between YAP/TAZ and IRS2 or phospho-AKT expression. Finally, the inhibition of AKT by MK-2206 treatment attenuates NAFLD development and tumorigenesis. Our findings indicate that Hippo pathway interacts with AKT signaling during the intervention with IRS2 to prevent NAFLD and liver cancer.

Activation of Akt/PKB at Serine 473 by N-acetylphytosphingosine (NAPS) and $C_{2}-ceramide$ Reduces Melanin Synthesis in B16F10 Mouse Melanoma Cells

  • Yi, Seh-Yoon;Han, Seon-Kyu;Park, Mee-Kyung;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.81-88
    • /
    • 2006
  • Sphingolipid metabolites regulate many aspects of cell proliferation, differentiation, and apoptosis. In the present study, we have assessed the effects of the novel phytosphingosine derivative, N-acetylphytospingosine (NAPS), on the depigmentation of murine B16F10 melanoma cells, and have also attempted to identify the possible signaling pathway involved, in comparison with $C_{2}-ceramide$. NAPS and $C_{2}-ceramide$ both inhibited the growth of the B16F10 cells in a dose-dependent manner. Melanin content and tyrosinase activity were significantly reduced in response to treatment with NAPS and $C_{2}-ceramide$ at concentrations in a range between $1-5\;{\mu}M$. However, the levels of tyrosinase mRNA, as well as the levels of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) genes and the level of tyrosinase protein remained unaffected by treatment with either NAPS or $C_{2}-ceramide$. We also attempted to determine the signaling pathway exploited by NAPS and $C_{2}-ceramide$. Interestingly, the phosphorylation of Akt/PKB at serine 473 by NAPS was reduced at the 5 minute mark, whereas $C_{2}-ceramide$ induced the phosphorylation of Akt/PKB at serine 473. Finally, Akt/PKB activity in the NAPS-treated cells was elevated in comparison with the untreated cells. LY294002, a specific PI3-K inhibitor which is located upstream of Akt/PKB, inhibited the phosphorylation of Akt/PKB, but induced an increase in melanin synthesis. These results suggest that the activation of Akt/PKB at serine 473 is related with the suppression of melanin production in the B16F10 mouse melanoma cells. Therefore, the mechanisms exploited by NAPS and $C_{2}-ceramide$ responsible for the depigmentation of B16F10 cells were concluded to involve the inhibition of melanosomal tyrosinase activity.

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway

  • Long, Zi-Wen;Wu, Jiang-Hong;Hong, Cai;Wang, Ya-Nong;Zhou, Ye
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.532-544
    • /
    • 2018
  • Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Effects of Curcumin on Apoptosis in SW480 Human Colon Cancer Cell Line (Curcumin이 인체대장암세포주인 SW480 cell에서 세포사멸에 미치는 영향)

  • 최옥숙;김우경
    • Journal of Nutrition and Health
    • /
    • 제37권1호
    • /
    • pp.31-37
    • /
    • 2004
  • Curcumin, a natural compound extracted from rhizomes of Curcuma longa, has been shown to possess potent anti-inflammatory and anti-tumor activity. The mechanism by which curcumin initiates apoptosis remains poorly understood. In this study, we investigated the effects of curcumin on caspase-3 activity and protein expression of procaspase-3, Bcl-2, Bax, total Akt and phosphorylated Akt in SW480 human colon cancer cell. We cultured SW480 cells in the presence of various concentrations (0, 10, 20 or 30 uM) of curcumin. Curcumin inhibited colon cancer cell growth in a dose-dependent manner (p < 0.05). Caspase-3 activity was significantly increased dose-dependently in cells treated with curcumin (p < 0.05), concisely procaspase-3 expression was significantly decreased. Bcl-2 levels were decreased dose-dependently in cells treated with curcumin (p < 0.05), but Ben remained unchanged. In addition, phosphorylated Akt levels and total Akt levels were markedly lower in cells treated with 20 uM of curcumin treatment (p < 0.05), In conclusion, we have shown that curcumin inhibits cell growth and induces apoptosis in SW480 human colon cancer cell lines via Akt signal pathway.

Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

  • Kundu, Juthika;Chae, In Gyeong;Chun, Kyung-Soo
    • Journal of Cancer Prevention
    • /
    • 제21권3호
    • /
    • pp.135-143
    • /
    • 2016
  • Background: Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods: Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results: Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase $(AMPK){\alpha}$ and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and $AMPK{\alpha}$ abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions: Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or $AMPK{\alpha}/Nrf2$ pathway in HaCaT cells.

Sphingosine-1-phosphate Promotes the Survival of Mel-Ab Cells via ERK and Akt activation

  • Kim, Dong-Seok;Hwang, Eui-Soo;Kim, Sook-Young;Lee, Jai-Eun;Park, Kyoung-Chan
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.433-435
    • /
    • 2002
  • In the present study, we investigated the actions of sphingosine-I-phosphate (SPP) in Mel-Ab melanocytes. We observed the cytoprotective effect of SPP on UVB-induced cell death. Following exposure of cells to UVB, a significant protective effect was seen in cultures pretreated with SPP. Since SPP is well known as a mitogenic agent, it is possible that the mitogenic effect of SPP may contribute to cell survival. Surprisingly, we found that SPP inhibited DNA-synthesis significantly. We were next interested in the regulation of the extracellular signal-regulated protein kinase (ERK) and Akt pathways by SPP. We clearly observed that SPP potently stimulated the phosphorylation of both ERK and Akt against UVB-induced cell death. Based on these results, we conclude that SPP may show its cytoprotective effect through ERK and Akt activation.

  • PDF

The Inhibitory Effects of Cordycepin on Phosphoproteins including PI3K, Akt, and p38 (PI3K, Akt, p38을 포함한 인산화단백질에 대한 Cordycepin의 억제효과)

  • Kwon, Hyuk-Woo;Lee, Dong-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • 제49권2호
    • /
    • pp.99-107
    • /
    • 2017
  • A species of Cordyceps, an ingredient in Chinese traditional medicine well-known for its major component, cordycepin (3'-deoxyadenosine), has been known to have antiplatelet effects; however, its effects on regulation of phosphoprotein have not been fully elucidated. In this study, we investigated how cordycepin regulates the phosphoprotein, including phosphatidylinositol 3-kinase (PI3K)/Akt and p38, to inhibit platelet aggregation, which are concerned with fibrinogen binding to glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}_3$) and granule secretion in platelets. Our finding suggests that cordycepin inhibits collagen-induced platelet aggregation with $261.1{\mu}M$ of $IC_{50}$ and also inhibits fibrinogen binding to ${\alpha}IIb/{\beta}_3$ by a suppression of PI3K/Akt phosphorylation in a dose dependent manner. In addition, cordycepin further showed to inhibit collagen-induced p38 phosphorylation, reducing granule secretion (i.e. ATP- and serotonin-release) and thromboxane $A_2$ ($TXA_2$) production without regulating cyclooxygenase-1 (COX-1) and thromboxane A synthase (TXAS) activities, as well as phospholipase $C-{\gamma}_2$ ($PLC-{\gamma}_2$) phosphorylation. In conclusion, these results demonstrate that cordycepin-mediated antiplatelet effects were due to the inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ via the suppression of PI3K/Akt phosphorylation and inhibition of granule secretion & $TXA_2$ production by suppressing p38 phosphorylation. These results strongly indicate that cordycepin might have therapeutic or preventive potential for platelet aggregation-mediated disorders, regulating the phosphoprotein, including PI3K/Akt and p38.

Regulation of adductor muscle growth by the IGF-1/AKT pathway in the triploid Pacific oyster, Crassostrea gigas

  • Kim, Eun-Young;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • 제22권9호
    • /
    • pp.19.1-19.10
    • /
    • 2019
  • We investigated the insulin-like growth factor 1 (IGF-1)/AKT signaling pathway involved in muscle formation, growth, and movement in the adductor muscle of triploid Pacific oyster, Crassostrea gigas. Large and small triploid oysters (LTs and STs) cultured under identical conditions were screened, and the signaling pathways of individuals with superior growth were compared and analyzed. mRNA and protein expression levels of actin, troponin, tropomyosin, and myosin, proteins important in muscle formation, were higher in LTs compared with STs. Expression levels of IGF-1, IGF binding protein (IGFBP), and IGFBP complex acid-labile subunit were also higher in LTs compared with STs. Phosphorylation of the IGF receptor as well as that of AKT was high in LTs. In addition, the expression of phosphomammalian target of rapamycin and phospho-glycogen synthase kinase $3{\beta}$ was increased and the expression of Forkhead box O3 was decreased in LTs. Therefore, we suggested that the IGF-1/AKT signaling pathway affects the formation, growth, and movement of the adductor muscle in triploid oysters.