• 제목/요약/키워드: Akt siRNA

검색결과 43건 처리시간 0.029초

소교세포에서 heme oxygenase-1 발현 유도를 통한 치자(Gardenia jasminoides)의 항염증 효과 (Gardenia jasminoides Exerts Anti-inflammatory Activity via Akt and p38-dependent Heme Oxygenase-1 Upregulation in Microglial Cells)

  • 송지수;신지은;김지희;김영희
    • 생명과학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2017
  • 치자 열매는 아시아에서 음식과 옷의 염료로 사용되어 왔다. 본 연구에서는 BV-2 소교세포에서 치자열매 열수추출물(GJ)의 항염증 효과를 관찰하고 그 작용 기전을 연구하였다. GJ는 세포에 독성을 유도하지 않으면서 lipopolysaccharide로 인한 nitric oxide (NO) 분비와 inducible nitric oxide synthase (iNOS) 생성 및 활성산소 생성을 억제하였다. 또한 GJ는 농도의존적으로 heme oxygenase-1 (HO-1)의 발현을 유도하였다. 더군다나 HO-1 siRNA를 처리했을 때는 GJ가 iNOS의 발현을 억제하지 못하였다. GJ는 HO-1의 발현에 관여하는 전사인자인 nuclear factor E2-related factor 2를 핵으로 이동시켰다. 또한 GJ에 의한 HO-1의 발현은 phosphatidylinositol 3-kinase(PI-3K) 및 p38 kinase 억제제에 의해 감소되었으며, GJ가 Akt와 p38 kinase의 인산화를 유도하였다. 이상의 결과를 종합해보면, GJ는 PI3K/Akt 및 p38 신호전달과정을 통해 HO-1의 발현을 유도함으로써 NO와 같은 염증매개물질의 생성을 억제한다는 것을 알 수 있다. 이러한 연구결과는 치자열매가 신경염증을 억제하는 새로운 기전을 밝힌 것이다.

Activation of ATM/Akt/CREB/eNOS Signaling Axis by Aphidicolin Increases NO Production and Vessel Relaxation in Endothelial Cells and Rat Aortas

  • Park, Jung-Hyun;Cho, Du-Hyong;Hwang, Yun-Jin;Lee, Jee Young;Lee, Hyeon-Ju;Jo, Inho
    • Biomolecules & Therapeutics
    • /
    • 제28권6호
    • /
    • pp.549-560
    • /
    • 2020
  • Although DNA damage responses (DDRs) are reported to be involved in nitric oxide (NO) production in response to genotoxic stresses, the precise mechanism of DDR-mediated NO production has not been fully understood. Using a genotoxic agent aphidicolin, we investigated how DDRs regulate NO production in bovine aortic endothelial cells. Prolonged (over 24 h) treatment with aphidicolin increased NO production and endothelial NO synthase (eNOS) protein expression, which was accompanied by increased eNOS dimer/monomer ratio, tetrahydrobiopterin levels, and eNOS mRNA expression. A promoter assay using 5'-serially deleted eNOS promoters revealed that Tax-responsive element site, located at -962 to -873 of the eNOS promoter, was responsible for aphidicolin-stimulated eNOS gene expression. Aphidicolin increased CREB activity and ectopic expression of dominant-negative inhibitor of CREB, A-CREB, repressed the stimulatory effects of aphidicolin on eNOS gene expression and its promoter activity. Co-treatment with LY294002 decreased the aphidicolin-stimulated increase in p-CREB-Ser133 level, eNOS expression, and NO production. Furthermore, ectopic expression of dominant-negative Akt construct attenuated aphidicolin-stimulated NO production. Aphidicolin increased p-ATM-Ser1981 and the knockdown of ATM using siRNA attenuated all stimulatory effects of aphidicolin on p-Akt-Ser473, p-CREB-Ser133, eNOS expression, and NO production. Additionally, these stimulatory effects of aphidicolin were similarly observed in human umbilical vein endothelial cells. Lastly, aphidicolin increased acetylcholine-induced vessel relaxation in rat aortas, which was accompanied by increased p-ATM-Ser1981, p-Akt-Ser473, p-CREB-Ser133, and eNOS expression. In conclusion, our results demonstrate that in response to aphidicolin, activation of ATM/Akt/CREB/eNOS signaling cascade mediates increase of NO production and vessel relaxation in endothelial cells and rat aortas.

Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner

  • Dai, Wen-Ling;Liu, Xin-Tong;Bao, Yi-Ni;Yan, Bing;Jiang, Nan;Yu, Bo-Yang;Liu, Ji-Hua
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.6.1-6.12
    • /
    • 2018
  • Morphine tolerance remains a challenge in the management of chronic pain in the clinic. As shown in our previous study, the dopamine D2 receptor (D2DR) expressed in spinal cord neurons might be involved in morphine tolerance, but the underlying mechanisms remain to be elucidated. In the present study, selective spinal D2DR blockade attenuated morphine tolerance in mice by inhibiting phosphatidylinositol 3 kinase (PI3K)/serine-threonine kinase (Akt)-mitogen activated protein kinase (MAPK) signaling in a ${\mu}$ opioid receptor (MOR)-dependent manner. Levo-corydalmine (l-CDL), which exhibited micromolar affinity for D2DR in D2/CHO-K1 cell lines in this report and effectively alleviated bone cancer pain in our previous study, attenuated morphine tolerance in rats with chronic bone cancer pain at nonanalgesic doses. Furthermore, the intrathecal administration of l-CDL obviously attenuated morphine tolerance, and the effect was reversed by a D2DR agonist in mice. Spinal D2DR inhibition and l-CDL also inhibited tolerance induced by the MOR agonist DAMGO. l-CDL and a D2DR small interfering RNA (siRNA) decreased the increase in levels of phosphorylated Akt and MAPK in the spinal cord; these changes were abolished by a PI3K inhibitor. In addition, the activated Akt and MAPK proteins in mice exhibiting morphine tolerance were inhibited by a MOR antagonist. Intrathecal administration of a PI3K inhibitor also attenuated DAMGO-induced tolerance. Based on these results, l-CDL antagonized spinal D2DR to attenuate morphine tolerance by inhibiting PI3K/Akt-dependent MAPK phosphorylation through MOR. These findings provide insights into a more versatile treatment for morphine tolerance.

TNFα-induced Down-Regulation of Estrogen Receptor α in MCF-7 Breast Cancer Cells

  • Lee, Sang-Han;Nam, Hae-Seon
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.285-290
    • /
    • 2008
  • Estrogen-induced proliferation in estrogen receptor (ER)-positive breast cancer cells is primarily mediated through two distinct intracellular receptors, $ER{\alpha}$ and $ER{\beta}$. Although tumor necrosis factor alpha ($TNF{\alpha}$) and $E2/ER{\alpha}$ are known to exert opposing effects on cell proliferation in MCF-7 cells, the mechanism by which $TNF{\alpha}$ antagonizes $E2/ER{\alpha}$-mediated cell proliferation is not well understood. The present study suggests that reduced cell survival in response to $TNF{\alpha}$ treatment in MCF-7 cells may be associated with the down-regulation of $ER{\alpha}$ protein. The decrease in $ER{\alpha}$ protein level was accompanied by an inhibition of $ER{\alpha}$ gene transcription. Cell viability was decreased synergistically by the combined treatment with $ER{\alpha}$-siRNA and $TNF{\alpha}$. Furthermore, pretreatment of cells with the PI3-kinase (PI3K)/ Akt inhibitor, LY294002, markedly enhanced $TNF{\alpha}$-induced down-regulation of the $ER{\alpha}$ protein, suggesting that the PI3K/Akt pathway might be involved in control of the $ER{\alpha}$ level. Moreover, down-regulation of $ER{\alpha}$ by $TNF{\alpha}$ was not inhibited in cells that were pretreated with the proteasome inhibitors, MG132 and MG152, which suggests that proteasome-dependent proteolysis does not significantly influence $TNF{\alpha}$-induced down-regulation of $ER{\alpha}$ protein. In contrast, the effect of the PI3K/Akt inhibitor on $ER{\alpha}$ was blocked in cells that were treated with LY294002 in the presence of the proteasome inhibitors. Collectively, our findings show that the $TNF{\alpha}$ may partly regulate the growth of MCF-7 breast cancer cells through the down-regulation of $ER{\alpha}$ expression, which is primarily mediated by a PI3K/Akt signaling.

Ginsenoside compound K ameliorates palmitate-induced atrophy in C2C12 myotubes via promyogenic effects and AMPK/autophagy-mediated suppression of endoplasmic reticulum stress

  • Kim, Tae Jin;Pyun, Do Hyeon;Kim, Myeong Jun;Jeong, Ji Hoon;Abd El-Aty, A.M.;Jung, Tae Woo
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.444-453
    • /
    • 2022
  • Background: Compound K (CK) is among the protopanaxadiol (PPD)-type ginsenoside group, which produces multiple pharmacological effects. Herein, we examined the effects of CK on muscle atrophy under hyperlipidemic conditions along with its pro-myogenic effects. Further, the molecular pathways underlying the effects of CK on skeletal muscle have been justified. Methods: C2C12 myotubes were treated with palmitate and CK. C2C12 myoblasts were differentiated using CK for 4-5 days. For the in vivo experiments, CK was administered to mice fed on a high-fat diet for 8 weeks. The protein expression levels were analyzed using western blotting analysis. Target protein suppression was performed using small interfering (si) RNA transfection. Histological examination was performed using Jenner-Giemsa and H&E staining techniques. Results: CK treatment attenuated ER stress markers, such as eIF2a phosphorylation and CHOP expression and impaired myotube formation in palmitate-treated C2C12 myotubes and skeletal muscle of mice fed on HFD. CK treatment augmented AMPK along with autophagy markers in skeletal muscle cells in vitro and in vivo experiments. AMPK siRNA or 3-MA, an autophagy inhibitor, abrogated the impacts of CK in C2C12 myotubes. CK treatment augmented p38 and Akt phosphorylation, leading to an enhancement of C2C12 myogenesis. However, AMPK siRNA abolished the effects of CK in C2C12 myoblasts. Conclusion: These findings denote that CK prevents lipid-induced skeletal muscle apoptosis via AMPK/autophagy-mediated attenuation of ER stress and induction of myoblast differentiation. Therefore, we may suggest the use of CK as a potential therapeutic approach for treating muscle-wasting conditions associated with obesity.

Knockdown of Ezrin by RNA Interference Reverses Malignant Behavior of Human Pancreatic Cancer Cells in Vitro

  • Zhong, Zhi-Qiang;Song, Mao-Min;He, Ying;Cheng, Shi;Yuan, Hui-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3781-3789
    • /
    • 2012
  • Background: Pancreatic cancer is one of the most aggressive tumors with a dismal prognosis. The membrane cytoskeletal crosslinker Ezrin participates in several functions including cell proliferation, adhesion, motility and survival. There is increasing evidence that Ezrin is overexpressed in vast majority of malignant tumors and regulates tumor progression. However, its roles in pancreatic cancer remain elusive. Methods: Three pairs of specific Ezrin siRNAs were designed and synthetized and screened to determine the most efficient one for construction of a hairpin RNA plasmid targeting Ezrin. After transfection into the Panc-1 pancreatic cancer cell line, real-time quantitative PCR and Western blotting were performed to examine the expression of mRNA and protein. The MTT method was applied to examine the proliferation and the drug sensibility to Gemcitabine. Flow cytometry was used to assess the cycle and apoptosis, while capacity for invasion was determined with transwell chambers. Furthermore, we detected phosphorylated-Erk1/2 protein and phosphorylated-Akt protein by Western blotting. Results: Real-time quantitative PCR and Western blotting revealed that Ezrin expression was notably down-regulated at both mRNA and protein levels by RNA interference (P< 0.01). Proliferation was inhibited and drug resistance to gemcitabine was improved (P< 0.05). Flow cytometry showed that the proportion of cells in the G1/G0 phase increased (P< 0.01), and in G2/M and S phases decreased (P< 0.05), with no apparent differences in apoptosis (P> 0.05). The capacity for invasion was markedly reduced (P< 0.01). In addition, down-regulating Ezrin expression had no effect on phosphorylated-Akt protein (P>0.05), but could decrease the level of phosphorylated-Erk1/2 protein (P< 0.05). Conclusions: RNA interference of Ezrin could inhibit its expression in the pancreatic cancer cells line Panc-1, leading to a potent suppression of malignant behavior in vitro. Assessment of potential as a target for pancreatic cancer treatment is clearly warranted.

패혈증에서 PD-L1 (Programmed Cell Death-ligand 1)의 발현 증가 기전 (Induction Mechanism of PD-L1 (Programmed Cell Death-ligand 1) in Sepsis)

  • 이상민
    • Tuberculosis and Respiratory Diseases
    • /
    • 제65권4호
    • /
    • pp.343-350
    • /
    • 2008
  • PD-L1 is expressed in a variety of antigen-presenting cells and provides T cell tolerance via ligation with its receptor PD-1 and B7-1 on T cells. Stimulation with lipopolysaccharide (LPS) can increase the level of PD-L1 expression in B cells and macrophages, which suggests that this molecule plays a role in the immunosuppression observed in severe sepsis. The aim of this study was to identify which of the downstream pathways of TLR4 are involved in the up-regulation of PD-L1 by LPS in macrophages. Flow cytometry was used to examine the expression of PD-L1 in RAW 264.7 macrophages stimulated with LPS. The following chemical inhibitors were used to evaluate the role of each pathway: LY294002 for PI3K/Akt, SB202190 for p38 MAPK, and U0126 for MEK. LPS induced the expression of PD-L1 in a time- and dose-dependent manner. Transfection of siRNA for TLR4 suppressed the induction of PD-L1. Pretreatment with LY294002 and SB202190 decreased the level of PD-L1 expression but U0126 did not. Overall, the PI3K/Akt and p38 MAPK pathways are involved in the up-regulation of PD-L1 expression in RAW 264.7 macrophages stimulated with LPS.

Long Noncoding RNA HOXA11-AS Modulates the Resistance of Nasopharyngeal Carcinoma Cells to Cisplatin via miR-454-3p/c-Met

  • Lin, Feng-Jie;Lin, Xian-Dong;Xu, Lu-Ying;Zhu, Shi-Quan
    • Molecules and Cells
    • /
    • 제43권10호
    • /
    • pp.856-869
    • /
    • 2020
  • To elucidate the mechanism of action of HOXA11-AS in modulating the cisplatin resistance of nasopharyngeal carcinoma (NPC) cells. HOXA11-AS and miR-454-3p expression in NPC tissue and cisplatin-resistant NPC cells were measured via quantitative reverse transcriptase polymerase chain reaction. NPC parental cells (C666-1 and HNE1) and cisplatin-resistant cells (C666-1/DDP and HNE1/DDP) were transfected and divided into different groups, after which the MTT method was used to determine the inhibitory concentration 50 (IC50) of cells treated with different concentrations of cisplatin. Additionally, a clone formation assay, flow cytometry and Western blotting were used to detect DDP-induced changes. Thereafter, xenograft mouse models were constructed to verify the in vitro results. Obviously elevated HOXA11-AS and reduced miR-454-3p were found in NPC tissue and cisplatin-resistant NPC cells. Compared to the control cells, cells in the si-HOXA11-AS group showed sharp decreases in cell viability and IC50, and these results were reversed in the miR-454-3p inhibitor group. Furthermore, HOXA11-AS targeted miR-454-3p, which further targeted c-Met. In comparison with cells in the control group, HNE1/DDP and C666-1/DDP cells in the si-HOXA11-AS group demonstrated fewer colonies, with an increase in the apoptotic rate, while the expression levels of c-Met, p-Akt/Akt and p-mTOR/mTOR decreased. Moreover, the si-HOXA11-AS-induced enhancement in sensitivity to cisplatin was abolished by miR-454-3p inhibitor transfection. The in vivo experiment showed that DDP in combination with si-HOXA11-AS treatment could inhibit the growth of xenograft tumors. Silencing HOXA11-AS can inhibit the c-Met/AKT/mTOR pathway by specifically upregulating miR-454-3p, thus promoting cell apoptosis and enhancing the sensitivity of cisplatin-resistant NPC cells to cisplatin.

LPS로 인한 RAW 264.7 세포의 염증반응에 미치는 achyranthoside E dimethyl ester의 효과 (Anti-inflammatory Effect of Achyranthoside E Dimethyl Ester in LPS-stimulated RAW 264.7 Cells)

  • 방수영;김지희;문형인;김영희
    • 생명과학회지
    • /
    • 제23권6호
    • /
    • pp.736-742
    • /
    • 2013
  • Achyranthoside E dimethyl ester (AEDE)는 Achyranthes japonica에서 분리한 oleanolic acid glycoside이다. 본 연구에서는 대식세포에서 lipopolysaccharide (LPS)로 인한 nitric oxide (NO)의 생성에 미치는 AEDE의 효과를 관찰하고 그 작용 기전을 연구하였다. AEDE는 NO 생성과 inducible NO synthase (iNOS) 발현을 억제하였으며 세포에 독성을 유도하지 않았다. 또한 AEDE는 heme oxygenase-1 (HO-1)의 발현을 유도하였으며, HO-1 siRNA를 처리했을 때 AEDE가 iNOS의 발현을 억제하지 못하였다. AEDE는 HO-1의 발현에 관여하는 전사인자인 nuclear factor E2-related factor 2 (Nrf2)를 핵으로 이동시켰다. 한편 AEDE에 의한 HO-1의 발현은 phosphatidylinositol 3-kinase (PI-3K) 및 extracellular signal regulated kinase (ERK1/2) 억제제에 의해 감소되었으며, AEDE가 Akt와ERK1/2의 인산화를 유도하였다. 이상의 결과를 종합해보면, AEDE는 대식세포에서 PI-3K/Akt/ERK-Nrf2 신호전달과정을 통해 HO-1의 발현을 유도함으로써 NO와 같은 염증매개물질의 생성을 억제한다는 것을 알 수 있다. 이러한 연구결과는 AEDE가 항염증제로 사용될 수 있음을 시사한다.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.