• Title/Summary/Keyword: Akt/mTOR

검색결과 112건 처리시간 0.022초

Resveratrol Downregulates Acetyl-CoA Carboxylase $\alpha$ and Fatty Acid Synthase by AMPK-mediated Downregulation of mTOR in Breast Cancer Cells

  • Park, Sahng-Wook;Yoon, Sa-Rah;Moon, Jong-Seok;Park, Byeong-Woo;Kim, Kyung-Sup
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.1047-1051
    • /
    • 2008
  • Overexpression of HER2 in breast cancer cells is considered to induce the expression of acetyl-CoA carboxylase $\alpha$ (ACACA) and fatty acid synthase (FASN) through activation of mammalian target of rapamycin (mTOR) signaling pathway. Resveratrol, a red wine polyphenol, has been shown to induce apoptosis in several cancers by interfering in several signaling pathways. Present study elucidated the mechanism by which resveratrol downregulates ACACA and FASN in breast cancer cells. Resveratrol activated AMP-activated protein kinase (AMPK) and downregulated mTOR in BT-474 cells. These effects of resveratrol were mimicked by AICAR, an AMPK activator, and exogenously expressed constitutively active AMPK, while they were abolished by a dominant-negative mutant of AMPK. The downregulation of mTOR was not accompanied with changes in Akt, the upstream regulator of mTOR. These findings indicate that the downregulation of ACACA and FASN by resveratrol is mediated by the downregulation of mTOR signaling pathway via activation of AMPK.

Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling

  • Yang, Kyeong-Eun;Jang, Hyun-Jin;Hwang, In-Hu;Hong, Eun Mi;Lee, Min-Goo;Lee, Soon;Jang, Ik-Soon;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.341-349
    • /
    • 2020
  • Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

N-Adamantyl-4-methylthiazol-2-amine suppresses glutamate-induced autophagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons

  • Yang, Seung-Ju;Han, A Reum;Choi, Hye-Rim;Hwang, Kyouk;Kim, Eun-A;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제53권10호
    • /
    • pp.527-532
    • /
    • 2020
  • We recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner. KHG26693 attenuated the glutamate-induced increase in protein levels of LC3, beclin-1, and p62. Whereas glutamate decreased the phosphorylation of PI3K, Akt, and mTOR, these levels were restored by treatment with KHG26693. These results suggest that KHG26693 inhibits glutamate-induced autophagy by regulating PI3K/Akt/mTOR signaling. Finally, KHG26693 treatment also attenuated glutamate-induced increases in reactive oxygen species, glutathione, glutathione peroxidase, and superoxide dismutase levels in cortical neurons, indicating that KHG26693 also protects cortical neurons against glutamate-induced autophagy by regulating the reactive oxygen species scavenging system.

Antitumor Activity of Combination Therapy with Metformin and Trametinib in Non-Small Cell Lung Cancer Cells

  • Ko, Eunjeong;Baek, Seungjae;Kim, Jiwon;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권2호
    • /
    • pp.113-123
    • /
    • 2020
  • Metformin has been widely used as an antidiabetic drug, and reported to inhibit cell proliferation in many cancers including non-small cell lung cancer (NSCLC). In NSCLC cells, metformin suppresses PI3K/AKT/mTOR signaling pathway, but effect of metformin on RAS/RAF/MEK/ERK signaling pathway is controversial; several studies showed the inhibition of ERK activity, while others demonstrated the activation of ERK in response to metformin exposure. Metformin-induced activation of ERK is therapeutically important, since metformin could enhance cell proliferation through RAS/RAF/MEK/ERK pathway and lead to impairment of its anticancer activity suppressing PI3K/AKT/mTOR pathway, requiring blockade of both signaling pathways for more efficient antitumor effect. The present study tested the combination therapy of metformin and trametinib by monitoring the alterations of regulatory effector proteins of cell signaling pathways and the effect of the combination on cell viability in NCI-H2087 NSCLC cells with NRAS and BRAF mutations. We show that metformin alone blocks PI3K/AKT/mTOR signaling pathway but induces the activation and phosphorylation of ERK. The combination therapy synergistically decreased cell viability in treatment with low doses of two drugs, while it gave antagonistic effect with high doses. These findings suggest that the efficacy of metformin and trametinib combination therapy may depend on the alteration of ERK activity induced by metformin and specific cellular context of cancer cells.

5-Hydroxytryptophan Reduces Levodopa-Induced Dyskinesia via Regulating AKT/mTOR/S6K and CREB/ΔFosB Signals in a Mouse Model of Parkinson's Disease

  • Yujin Choi;Eugene Huh;Seungmin Lee;Jin Hee Kim;Myoung Gyu Park;Seung-Yong Seo;Sun Yeou Kim;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.402-410
    • /
    • 2023
  • Long-term administration of levodopa (L-DOPA) to patients with Parkinson's disease (PD) commonly results in involuntary dyskinetic movements, as is known for L-DOPA-induced dyskinesia (LID). 5-Hydroxytryptophan (5-HTP) has recently been shown to alleviate LID; however, no biochemical alterations to aberrant excitatory conditions have been revealed yet. In the present study, we aimed to confirm its anti-dyskinetic effect and to discover the unknown molecular mechanisms of action of 5-HTP in LID. We made an LID-induced mouse model through chronic L-DOPA treatment to 6-hydroxydopamine-induced hemi-parkinsonian mice and then administered 5-HTP 60 mg/kg for 15 days orally to LID-induced mice. In addition, we performed behavioral tests and analyzed the histological alterations in the lesioned part of the striatum (ST). Our results showed that 5-HTP significantly suppressed all types of dyskinetic movements (axial, limb, orolingual and locomotive) and its effects were similar to those of amantadine, the only approved drug by Food and Drug Administration. Moreover, 5-HTP did not affect the efficacy of L-DOPA on PD motor manifestations. From a molecular perspective, 5-HTP treatment significantly decreased phosphorylated CREB and ΔFosB expression, commonly known as downstream factors, increased in LID conditions. Furthermore, we found that the effects of 5-HTP were not mediated by dopamine1 receptor (D1)/DARPP32/ERK signaling, but regulated by AKT/mTOR/S6K signaling, which showed different mechanisms with amantadine in the denervated ST. Taken together, 5-HTP alleviates LID by regulating the hyperactivated striatal AKT/mTOR/S6K and CREB/ΔFosB signaling.

Blockage of Autophagy Rescues the Dual PI3K/mTOR Inhibitor BEZ235-induced Growth Inhibition of Colorectal Cancer Cells

  • Oh, Iljoong;Cho, Hyunchul;Lee, Yonghoon;Cheon, Minseok;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2016
  • Molecular targeting for the altered signaling pathways has been proven to be effective for the treatment of many types of human cancer, including colorectal cancer (CRC). The dual phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 has shown to exhibit potent antitumor activity against solid tumors. Autophagy is a cellular lysosomal catabolic process to maintain metabolic homeostasis, which has been known to be induced in response to many therapeutic agents in cancer cells. This process is negatively regulated by mTOR and often acts as prosurvival or prodeath mechanism following cancer therapeutics. The current study was designed to investigate the antiproliferation activity of BEZ235 and to evaluate the role of autophagy induced by BEZ235 using HCT15 CRC cells bearing ras oncogene mutation. We found that BEZ235 decreases cell viability, which was mostly dependent on $G_1$ arrest of cell cycle via suppression of cyclin A expression. BEZ235 affects PI3K/Akt/mTOR signaling pathway by increasing the phosphorylation of AKT at $Ser^{473}$ and RAS/RAF/MEK/ERK pathway by decreasing the phosphorylation of ERK at $Tyr^{204}$. BEZ235 also stimulated autophagy induction as evidenced by the increased expression of LC3-II and abundant acidic vesicular organelles (AVOs) in the cytoplasm. In addition, the combination of BEZ235 with autophagy inhibitor chloroquine, a known antagonist of autophagy, counteracted the antiproliferation effect of BEZ235. Thus, our study indicates that autophagy induced in response to BEZ235 treatment appears to act as cell death mechanism in HCT15 CRC cells.

S-allylcysteine의 항암효과 (Anticarcinogenic Effect of S-allylcysteine (SAC))

  • 공일근;김현희;민계식
    • 생명과학회지
    • /
    • 제25권11호
    • /
    • pp.1331-1337
    • /
    • 2015
  • S-allylcysteine (SAC)은 숙성된 마늘로부터 유래된 수용성 유기황화합물로서, 여러 유형의 암세포에 대한 항암효과를 갖는 것으로 제시되어왔다. 본 논문은 in vitro 및 in vivo 연구결과에 기초하여 SAC가 세포증식, 세포사멸, 세포주기 및 전이에 미치는 세포신호전달경로와 분자적 메커니즘을 정리하였다. SAC는 Bax와 caspase-3을 포함하는 세포사멸촉진 단백질을 활성화하고 Bcl-2 세포사멸억제 단백질군을 억제하여 미토콘드리아-매개 내인성 경로를 통한 세포사멸을 초래 한다. SAC는 또한 PI3K/Akt/mTOR 및 MAPK/ERK 신호전달경로를 억제하여 NF-κB, cyclins, Cdks, PCNA 및 c-Jun의 발현과 활성을 감소시키고, 세포주기 억제단백질인 p16 및 p21의 발현을 증가시킴으로써 세포주기 억제를 유도하여 세포증식을 억제한다. 뿐만 아니라, SAC는 glutathione-s-transferase (GST)와 같은 항산화효소의 활성을 유도하여 독성물질에 의해 유도된 발암작용을 방지한다. 그리고, SAC는 MAPK/ERK 및 PI3K/Akt/mTOR/NF-κB 신호경로의 억제를 통한 전사억제조절인자 Id-1 및 SLUG의 발현억제를 통하여 초래된 COX-2의 발현감소와 E-cadherin의 발현증가에 의해 신생혈관생성과 MET의 억제를 유도함으로써 암세포의 침투와 전이를 억제한다. 따라서, SAC는 암의 예방과 치료를 위한 하나의 잠재적 화학요법제로 간주될 수 있다.

매실(Prunus mume) 메탄올 분획물의 처리에 따른 인체 전립선암세포 LNCaP의 apoptosis 유도 효과 (Induction of Apoptosis by Treatment of Human Prostate Cancer LNCaP Cells with Methanol Fractions from Prunus mume)

  • 김휘곤;김정호;허지안;원영선;서권일
    • 생명과학회지
    • /
    • 제31권3호
    • /
    • pp.321-329
    • /
    • 2021
  • 본 연구에서는 매실 메탄올 추출물(maesil methanol fraction, MMF)을 제조하여 인체 전립선암세포 LNCaP, RC-58T 및 PC-3에 대한 증식억제 효과를 확인하였다. 인체 전립선암세포인 PC-3 및 RC-58T와 비교해보았을 때, LNCaP은 MMF의 처리에 따른 증식억제 효과에 가장 민감했다. LNCaP의 형태학적 관찰과 apoptotic body 형성을 관찰해보았으며, MMF의 처리로 인한 형태의 변화, 핵 손상 및 응축을 확인했다. MMF의 처리로 인한 인체 전립선암세포 LNCaP에서 성장억제 효과가 내인성 apoptosis 경로와 관련 있는지 확인한 결과, pro-apoptotic 단백질인 Bax, caspase-3, caspase-9, PARP의 발현이 증가하였고, anti-apoptotic 단백질인 Bcl-2의 발현이 감소하는 것을 확인했다. MMF와 AIF inhibitor인 N-phenylmalemide (N-PM)의 병용처리군에 비해 MMF 단독처리군의 증식억제 효과가 유의적으로 나타났으며 AIF 및 Endo G의 발현 증가를 통해 외인성 apoptosis 경로에 영향을 미치는 것을 확인했다. 또한 PI3K inhibitor인 LY294002와 MMF의 병용처리군에 비해 MMF 단독처리군의 증식억제 효과가 유의적으로 나타났으며 PI3K, p-Akt, p-mTOR의 발현 감소를 통해 PI3K/Akt/mTOR 신호경로에 영향을 미치는 것을 확인했다. 결론적으로 인체 전립선암세포 LNCaP에서 MMF의 증식억제 효과는 천연물 유래 기능성 식품의 소재로써의 가능성을 보여준다.

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.