• Title/Summary/Keyword: Akt/MAPK

Search Result 153, Processing Time 0.023 seconds

Ameliorative Effect of Persicaria Poliata Etract through the Rgulation of AP-1, PI3K/Akt and MAPK Sgnaling Mlecules in UVB-Iradiated HaCaT Clls (HaCaT 세포에서 며느리 배꼽 추출물의 AP-1, PI3K/Akt 및 MAPK 활성 조절을 통한 광손상 억제 효과)

  • Hyun-Seo Yoon;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Purpose : Skin is the primary barrier to protect the body from various exogenous factors. Among them, UVB exposure can cause the induction of not only excessive inflammatory responses but also the degradation of extracellular matrix (ECM), including collagen and elastin. This study tried to investigate the ameliorative effect of Persicaria perfoliata ethanol extract (PPEE) on UVB-irradiated photodamage through the regulation of activator protein (AP)-1, phosphoinositide 3-kinase (PI3K)/Akt, and mitogen-activated protein kinase (MAPK) signaling molecules in HaCaT cells. Methods : The cytotoxicity of PPEE on HaCaT cells was evaluated by the WST-1 assay. The 80 mJ/cm2 of UVB (312 nm) was irradiated on HaCaT cells to induce the photodamage. Western blot analysis was conducted to investigate the protein expression levels of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and heme oxygenase (HO)-1 for ameliorative status by PPEE treatment in UVB-exposed HaCaT cells. In addition, the activated status of the inflammatory transcription factor, AP-1, as well as upstream signaling molecules, PI3K/Akt, and MAPK, were also evaluated by Western blot analysis. Results : Any cytotoxic effect was not induced at the concentration up to 200 ㎍/ml by PPEE treatment. Protein expression levels of COX-2 and MMP-9 were significantly down- and up-regulated by PPEE treatment. The inflammatory transcription factor AP-1, stimulated by UVB irradiation, was also significantly attenuated by PPEE treatment. The phosphorylated status of PI3K/Akt and MAPK were mitigated by PPEE treatment in UVB-exposed HaCaT cells. Moreover, PPEE treatment potently accelerated the expression of HO-1 and its transcription factor, nuclear factor-erythroid 2-related factor (Nrf)2, which is known for its anti-inflammatory activity. Conclusion : Consequently, PPEE treatment significantly regulated COX-2 and MMP-9 expressions in UVB-irradiated HaCaT cells. The inflammatory transcription factor AP-1, along with upstream signaling molecules PI3K/Akt and MAPKs, were also attenuated by PPEE treatment in UVB-exposed HaCaT cells. Additionally, PPEE treatment exaggerated HO-1 expression and Nrf2 activation, which might have contributed to the anti-inflammatory activity of PPEE. These results indicate that PPEE could be a candidate for attenuating UVB-induced photodamage in human skin.

Effects of Bee Venom on Glioma Cells (봉독(峰毒)이 Glioma Cell에 미치는 효과(效果))

  • Lee, Joo-Yeon;Kim, In-Ja;Choi, Bang-Seob;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.3
    • /
    • pp.117-127
    • /
    • 2008
  • Objective: Bee venom (BV) has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and relief of pain in Oriental medicine. The two main components of BV are melittin and phospholipase A2 (PLA2). Of these, melittin, the major active ingredient of BV, has been reported to induce apoptosis and to possess anti tumor effects. Several studies have established that the agents inducing apoptosis in target organs suppress tumorigenesis. As the other component, PLA2 has been reported to induce neurite outgrowth in PC12 cells. However, there was no report about proliferative effect of BV in neuronal cells. In order to examine the effect of BV on glioma cell, human glioma cell line, U87 was used. Methods: Analysis of proliferation was confirmed by MTT assay. BV increased cell number through dose and duration dependent manner and these effects are apparent at a concentration of 10 ug/ml. To observe which signaling molecules will be activated by BV, phosphorylation of Akt, MAPK, PYK2 or CREB were examined by Western blot analysis. To study the long term effect of BV in U87 cells, the image of cells treated with BV for 4 days were obtained. Results: The phosphorylation levels of PYK2 and Akt were increased at 5 min after addition of 10 ug/ml of BV and sustained to 2 hours. On the other hand, phosphorylation of MAPK and CREB were increased at 5 min, maximum at 10 min, and returned to 30 min. These imply that BV may activate two different signaling pathways, PYK2/Akt and MAPK/CREB. BV treated cells showed increased neurite number and length. Conclusion: These results propose that BV may induce differentiation as well as proliferation of U87 cells through the activation of PYK2/ Akt and MAPK/ CREB.

  • PDF

Interleukin-1β Signaling Contributes to Cell Cycle Arrest and Apoptotic Cell Death by Leptin via Modulation of AKT and p38MAPK in Hepatocytes

  • Ananda Baral;Pil-Hoon Park
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.611-626
    • /
    • 2024
  • Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling. Leptin significantly induced maturation and secretion of IL-1β in cultured rat hepatocytes. Interestingly, inhibition of IL-1β signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1β signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1β signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1β signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1β signaling in cytotoxic effect of leptin was further confirmed in vivo using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained in vivo, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1β signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.

Mycobacterial Heparin-binding Hemagglutinin Antigen Activates Inflammatory Responses through PI3-K/Akt, NF-${\kappa}B$, and MAPK Pathways

  • Kim, Ki-Hye;Yang, Chul-Su;Shin, A-Rum;Jeon, So-Ra;Park, Jeong-Kyu;Kim, Hwa-Jung;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • v.11 no.2
    • /
    • pp.123-133
    • /
    • 2011
  • Background: Mycobacterium tuberculosis (Mtb) heparin binding hemagglutinin (HBHA) is an Ag known to evoke effective host immune responses during tuberculosis infection. However, the molecular basis of the host immune response to HBHA has not been fully characterized. In this study, we examined the molecular mechanisms by which HBHA can induce the expression of proinflammatory cytokines in macrophages. Methods: HBHA-induced mRNA and protein levels of proinflammatory cytokines were determined in bone marrow-derived macrophages (BMDMs) using RT-PCR and ELISA analysis. The roles of intracellular signaling pathways for NF-${\kappa}B$, PI3-K/Akt, and MAPKs were investigated in macrophage proinflammatory responses after stimulation with HBHA. Results: HBHA robustly activated the expression of mRNA and protein of both TNF-${\alpha}$ and IL-6, and induced phosphorylation of NF-${\kappa}B$, Akt, and MAPKs in BMDMs. Both TNF-${\alpha}$ and IL-6 production by HBHA was regulated by the NF-${\kappa}B$, PI3-K, and MAPK pathways. Furthermore, PI3-K activity was required for the HBHA-induced activation of ERK1/2 and p38 MAPK, but not JNK, pathways. Conclusion: These data suggest that mycobacterial HBHA significantly induces proinflammatory responses through crosstalk between the PI3-K and MAPK pathways in macrophages.

Combination Therapy of the Active KRAS-Targeting Antibody inRas37 and a PI3K Inhibitor in Pancreatic Cancer

  • Lee, Ji Eun;Woo, Min Gyu;Jung, Kyung Hee;Kang, Yeo Wool;Shin, Seung-Min;Son, Mi Kwon;Fang, Zhenghuan;Yan, Hong Hua;Park, Jung Hee;Yoon, Young-Chan;Kim, Yong-Sung;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.274-283
    • /
    • 2022
  • KRAS activating mutations, which are present in more than 90% of pancreatic cancers, drive tumor dependency on the RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Therefore, combined targeting of RAS/MAPK and PI3K/AKT signaling pathways may be required for optimal therapeutic effect in pancreatic cancer. However, the therapeutic efficacy of combined MAPK and PI3K/AKT signaling target inhibitors is unsatisfactory in pancreatic cancer treatment, because it is often accompanied by MAPK pathway reactivation by PI3K/AKT inhibitor. Therefore, we developed an inRas37 antibody, which directly targets the intra-cellularly activated GTP-bound form of oncogenic RAS mutation and investigated its synergistic effect in the presence of the PI3K inhibitor BEZ-235 in pancreatic cancer. In this study, inRas37 remarkably increased the drug response of BEZ-235 to pancreatic cancer cells by inhibiting MAPK reactivation. Moreover, the co-treatment synergistically inhibited cell proliferation, migration, and invasion and exhibited synergistic anticancer activity by inhibiting the MAPK and PI3K pathways. The combined administration of inRas37and BEZ-235 significantly inhibited tumor growth in mouse models. Our results demonstrated that inRas37 synergistically increased the antitumor activity of BEZ-235 by inhibiting MAPK reactivation, suggesting that inRas37 and BEZ-235 co-treatment could be a potential treatment approach for pancreatic cancer patients with KRAS mutations.

LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-${\kappa}B$ Pathways

  • Lee, Seung Jin;Seo, Kyo Won;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • 5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS ($0{\sim}3{\mu}g/ml$) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-${\kappa}B$ were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-${\kappa}B$ were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-${\kappa}B$ pathways in monocytes.

Anti-obese and Blood Flow Improvement Activities of Ginseng Berry on the 45%Kcal High Fat Diet Supplied Mouse

  • Lee, Sol;Lee, Hae-Jeung;Chun, Yoon-Seok;Seol, Du-jin;Kim, Jong-Kyu;Ku, Sae-Kwang;Lee, Young-Joon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.107-127
    • /
    • 2018
  • Objectives : The present study investigated the anti-obese and blood flow improvement activities of aqueous extracts of ginseng berry (GBe) on the mild diabetic obese mice as compared with metformin. Methods : After end of 56 days of continuous oral administrations of GBe 150, 100 and 50 mg/kg, or metformin 250 mg/kg, anti-obese and blood flow improvement effects - the changes of body weights, body and abdominal fat density by in live dual-energy x-ray absorptionmetry (DEXA), tail bleeding time, prothrombin time (PT), activated partial thromboplastin time (aPTT), serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) levels, aorta and serum cyclic guanosine monophosphate (cGMP), nitric oxide (NO) and endothelin (ET)-1 levels, aorta phosphorylated PI3K (pPI3K), phosphorylated Akt (pAkt) and phosphorylated p38 MAPK (pp38 MAPK) levels were systemically analyzed. In addition, aorta vascular dilation and constriction related gene mRNA expressions - PI3K, Akt, eNOS, p38 MAPK and ET-1 were also analyzed by realtime RT-PCR. Results : The obesity and related blood flow impairment, induced by 84 days of continuous HFD supply, were significantly inhibited by 56 days of continuous oral treatment of GBe 150, 100 and 50mg/kg, dose-dependently, and they also dramatically normalized the changes of the aorta vascular dilation and constriction related gene mRNA expressions, also dose-dependently. Especially, GBe 150 mg/kg constantly showed favorable inhibitory activities against type II diabetes related obesity and vascular disorders through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities, as comparable to those of metformin 250 mg/kg in HFD mice. Conclusion : By assessing the key parameters for anti-obese and blood flow improvement activities on the HFD-induced mild diabetic obese mice, the present work demonstrated that GBe 150, 100 and 50 mg/kg showed favorable anti-obese and blood flow improvement effects in HFD-induced type II diabetic mice, through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities.

Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner

  • Dai, Wen-Ling;Liu, Xin-Tong;Bao, Yi-Ni;Yan, Bing;Jiang, Nan;Yu, Bo-Yang;Liu, Ji-Hua
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.6.1-6.12
    • /
    • 2018
  • Morphine tolerance remains a challenge in the management of chronic pain in the clinic. As shown in our previous study, the dopamine D2 receptor (D2DR) expressed in spinal cord neurons might be involved in morphine tolerance, but the underlying mechanisms remain to be elucidated. In the present study, selective spinal D2DR blockade attenuated morphine tolerance in mice by inhibiting phosphatidylinositol 3 kinase (PI3K)/serine-threonine kinase (Akt)-mitogen activated protein kinase (MAPK) signaling in a ${\mu}$ opioid receptor (MOR)-dependent manner. Levo-corydalmine (l-CDL), which exhibited micromolar affinity for D2DR in D2/CHO-K1 cell lines in this report and effectively alleviated bone cancer pain in our previous study, attenuated morphine tolerance in rats with chronic bone cancer pain at nonanalgesic doses. Furthermore, the intrathecal administration of l-CDL obviously attenuated morphine tolerance, and the effect was reversed by a D2DR agonist in mice. Spinal D2DR inhibition and l-CDL also inhibited tolerance induced by the MOR agonist DAMGO. l-CDL and a D2DR small interfering RNA (siRNA) decreased the increase in levels of phosphorylated Akt and MAPK in the spinal cord; these changes were abolished by a PI3K inhibitor. In addition, the activated Akt and MAPK proteins in mice exhibiting morphine tolerance were inhibited by a MOR antagonist. Intrathecal administration of a PI3K inhibitor also attenuated DAMGO-induced tolerance. Based on these results, l-CDL antagonized spinal D2DR to attenuate morphine tolerance by inhibiting PI3K/Akt-dependent MAPK phosphorylation through MOR. These findings provide insights into a more versatile treatment for morphine tolerance.

Involvement of Multiple Signaling Molecules in Peptidoglycan-induced Expression of Interleukin-1α in THP-1 Monocytes/Macrophages (THP-1 단핵구의 펩티도글리칸 유래 인터루킨-1 알파 발현에서 TLR2, PI3K/Akt/mTOR, MAPKs의 역할)

  • Heo, Weon;Son, Yonghae;Cho, Hyok-rae;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.421-429
    • /
    • 2022
  • The expression of interleukin-1α (IL-1α) is elevated in monocytic cells, such as monocytes and macro-phages, within atherosclerotic arteries, yet the cellular molecules involved in cytokine upregulation remain unclear. Because peptidoglycan (PG), a major component of gram-positive bacterial cell walls, is detected within the inflammatory cell-rich regions of atheromatous plaques, it was investigated if PG contributes to IL-1α expression in monocytes/macrophages. Exposure of THP-1 monocytic cells to PG resulted in elevated levels of IL-1α gene transcripts and increased secretion of IL-1α protein. The transcription and secretion of IL-1α were abrogated by OxPAPC, an inhibitor of TLR2/4, but not by polymyxin B that inhibits lipopolysaccharide-induced TLR4 activation. To understand the molecular mechanisms of the inflammatory responses due to bacterial pathogen-associated molecular patterns (PAMPs) in diseased arteries, we attempted to determine the cellular factors involved in the PG-induced upregulation of IL-1α expression. Pharmacological inhibition of cell signaling pathways with LY294002 (a PI3K inhibitor), Akti IV (an inhibitor of Akt activation), rapamycin (an mTOR inhibitor), U0126 (a MEK inhibitor), SB202190 (a p38 MAPK inhibitor), SP6001250 (a JNK inhibitor), and DPI (a NOX inhibitor) also significantly attenuated the PG-mediated expression of IL-1α. These results suggest that PG induces the monocytic or macrophagic expression of IL-1α, thereby contributing to vascular inflammation, via multiple signaling molecules, including TLR2, PI3K/Akt/mTOR, and MAPKs.