• Title/Summary/Keyword: Akt/MAPK

Search Result 153, Processing Time 0.028 seconds

Nerve growth factor-induced neurite outgrowth is potentiated by stabilization of TrkA receptors

  • Song, Eun-Joo;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.182-186
    • /
    • 2011
  • Exogenous stimuli such as nerve growth factor (NGF) exert their effects on neurite outgrowth via Trk neurotrophin receptors. TrkA receptors are known to be ubiquitinated via proteasome inhibition in the presence of NGF. However, the effect of proteasome inhibition on neurite outgrowth has not been studied extensively. To clarify these issues, we investigated signaling events in PC12 cells treated with NGF and the proteasome inhibitor MG132. We found that MG132 facilitated NGF-induced neurite outgrowth and potentiated the phosphorylation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways and TrkA receptors. MG132 stimulated internalization of surface TrkA receptor and stabilized intracellular TrkA receptor, and the $Ub^{K63}$ chain was found to be essential for stability. These results indicate that the ubiquitin-proteasome system potentiated neurite formation by regulating the stability of TrkA receptors.

Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells

  • Trang, Nguyen Thi Kieu;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 µM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.

Molecular Mechanisms Involved in Peptidoglycan-induced Expression of Tumor Necrosis Factor-α in Monocytic Cells (펩티도글리칸에 의한 단핵세포의 Tumor necrosis factor-α 발현 기전 연구)

  • Jeong, Ji-Young;Son, Yonghae;Kim, Bo-Young;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1251-1257
    • /
    • 2019
  • Peptidoglycan (PG) is found in atheromatous lesions of arteries, where monocytes/macrophages express inflammatory cytokines, including tumor necrosis factor-alpha ($TNF-{\alpha}$). This study investigated the effects of PG on $TNF-{\alpha}$ expression and examined possible cellular factors involved in $TNF-{\alpha}$ upregulation. The overall aim was to identify the molecular mechanisms underlying inflammatory responses to bacterial pathogen-associated molecular patterns in the artery. Exposure of human THP-1 monocytic cells to PG enhanced the secretion of $TNF-{\alpha}$ and induced its gene transcription. Inhibition of TLR-2/4 with OxPAPC significantly inhibited $TNF-{\alpha}$ gene expression, whereas inhibition of LPS by polymyxin B did not. The PG-induced expression of $TNF-{\alpha}$ was also significantly suppressed by pharmacological inhibitors that modulate activities of cellular signaling molecules; for example, U0126 (an ERK inhibitor), SB202190 (a p38 MAPK inhibitor), and SP6001250 (a JNK inhibitor) significantly attenuated PG-induced transcription of $TNF-{\alpha}$ and secretion of its gene product. $TNF-{\alpha}$ expression was also inhibited by rapamycin (an mTOR inhibitor), LY294002 (a PI3K inhibitor), and Akt inhibitor IV (an Akt inhibitor). ROS-regulating compounds, like NAC and DPI, also significantly attenuated $TNF{\alpha}$ expression induced by PG. These results suggest that PG induces $TNF-{\alpha}$ expression in monocytes/macrophages by multiple molecules, including TLR-2, PI3K, Akt, mTOR, MAPKs, and ROS.

Protective effects of Tat-NQO1 against oxidative stress-induced HT-22 cell damage, and ischemic injury in animals

  • Jo, Hyo Sang;Kim, Duk-Soo;Ahn, Eun Hee;Kim, Dae Won;Shin, Min Jea;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Choi, Yeon Joo;Yeo, Hyeon Ji;Chung, Christine Seok Young;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.617-622
    • /
    • 2016
  • Oxidative stress is closely associated with various diseases and is considered to be a major factor in ischemia. NAD(P)H: quinone oxidoreductase 1 (NQO1) protein is a known antioxidant protein that plays a protective role in various cells against oxidative stress. We therefore investigated the effects of cell permeable Tat-NQO1 protein on hippocampal HT-22 cells, and in an animal ischemia model. The Tat-NQO1 protein transduced into HT-22 cells, and significantly inhibited against hydrogen peroxide ($H_2O_2$)-induced cell death and cellular toxicities. Tat-NQO1 protein inhibited the Akt and mitogen activated protein kinases (MAPK) activation as well as caspase-3 expression levels, in $H_2O_2$ exposed HT-22 cells. Moreover, Tat-NQO1 protein transduced into the CA1 region of the hippocampus of the animal brain and drastically protected against ischemic injury. Our results indicate that Tat-NQO1 protein exerts protection against neuronal cell death induced by oxidative stress, suggesting that Tat-NQO1 protein may potentially provide a therapeutic agent for neuronal diseases.

Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D2 in the beating rat atrium

  • Zhang, Ying;Li, Xiang;Liu, Li-Ping;Hong, Lan;Liu, Xia;Zhang, Bo;Wu, Cheng-Zhe;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.293-300
    • /
    • 2017
  • Prostaglandin $D_2$ ($PGD_2$) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of $PGD_2$ in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether $PGD_2$ can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. $PGD_2$ (0.1 to $10{\mu}M$) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of $PGD_2$ on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 ($1.0{\mu}M$) and AL-8810 ($1.0{\mu}M$), $PGD_2$ and prostaglandin $F2{\alpha}$ ($PGF2{\alpha}$) receptor antagonists, respectively. Moreover, $PGD_2$ clearly upregulated atrial peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and the $PGD_2$ metabolite 15-deoxy-${\Delta}12$, 14-$PGJ_2$ (15d-$PGJ_2$, $0.1{\mu}M$) dramatically increased atrial ANP secretion. Increased ANP secretions induced by $PGD_2$ and 15d-$PGJ_2$ were completely blocked by the $PPAR{\gamma}$ antagonist GW9662 ($0.1{\mu}M$). PD98059 ($10.0{\mu}M$) and LY294002 ($1.0{\mu}M$), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by $PGD_2$. These results indicated that $PGD_2$ stimulated atrial ANP secretion and promoted positive inotropy by activating $PPAR{\gamma}$ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating $PGD_2$-induced atrial ANP secretion.

7α-Hydroxycholesterol Elicits TLR6-Mediated Expression of IL-23 in Monocytic Cells

  • Seo, Hyun Chul;Kim, Sun-Mi;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2015
  • We investigated the question of whether 7-oxygenated cholesterol derivatives could affect inflammatory and/or immune responses in atherosclerosis by examining their effects on expression of IL-23 in monocytic cells. $7{\alpha}$-Hydroxycholesterol ($7{\alpha}OHChol$) induced transcription of the TLR6 gene and elevated the level of cell surface TLR6 protein in THP-1 monocytic cells. Addition of an agonist of TLR6, FSL-1, to TLR6-expressing cells by treatment with $7{\alpha}OHChol$ resulted in enhanced production of IL-23 and transcription of genes encoding the IL-23 subunit ${\alpha}$ (p19) and the IL-12 subunit ${\beta}$ (p40). However, treatment with 7-ketocholesterol (7K) and $7{\beta}$-hydroxycholesterol ($7{\beta}OHChol$) did not affect TLR6 expression, and addition of FSL-1 to cells treated with either 7K or $7{\beta}OHChol$ did not influence transcription of the genes. Pharmacological inhibition of ERK, Akt, or PI3K resulted in attenuated transcription of TLR6 induced by $7{\alpha}OHChol$ as well as secretion of IL-23 enhanced by $7{\alpha}OHChol$ plus FSL-1. Inhibition of p38 MAPK or JNK resulted in attenuated secretion of IL-23. These results indicate that a certain type of 7-oxygenated cholesterol like $7{\alpha}OHChol$ can elicit TLR6-mediated expression of IL-23 by monocytic cells via PI3K/Akt and MAPKs pathways.

The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation

  • Jeon, Bo Ra;Kim, Su Jung;Hong, Seung Bok;Park, Hwa-Jin;Cho, Jae Youl;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.279-285
    • /
    • 2015
  • Background: Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng's therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated. Methods: The platelet aggregation was induced by collagen, the ligand of integrin ${\alpha}_{II}{\beta}_I$ and glycoprotein VI. The crude saponin's effects on granule secretion [e.g., calcium ion mobilization and adenosine triphosphate (ATP) release] were determined. The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38 MAPK, and phosphoinositide 3-kinase (PI3K)/Akt was analyzed by immunoblotting. In addition, the activation of integrin ${\alpha}_{II}b{\beta}_{III}$ was examined by fluorocytometry. Results: CSF strongly inhibited collagen-induced platelet aggregation and ATP release in a concentration-dependent manner. It also markedly suppressed $[Ca^{2+}]_i$ mobilization in collagen-stimulated platelets. Immunoblotting assay revealed that CSF significantly suppressed ERK1/2, p38, JNK, PI3K, Akt, and mitogen-activated protein kinase kinase 1/2 phosphorylation. In addition, our fraction strongly inhibited the fibrinogen binding to integrin ${\alpha}_{IIb}{\beta}_3$. Conclusion: Our present data suggest that CSF may have a strong antiplatelet property and it can be considered as a candidate with therapeutic potential for the treatment of cardiovascular disorders involving abnormal platelet function.

Inhibitory Effect of Mori Ramulus on Oxidative Stress Induced by High Glucose in LLC-$PK_1$ Cells (고농도 포도당에 노출된 마우스 신장상피세포에서 상지(桑枝)의 산화 스트레스 억제 효과)

  • Jang, Soo-Young;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.56-67
    • /
    • 2011
  • Objectives : Recent etiological studies show that oxidative stress might play a major role in the diabetes and its complications. Mori Ramulus (MR) has been known to have antioxidative, anti-inflammatory and antidiabetic effects. The methanol extract of MR was tested for its effectiveness in LLC-PK1 cells exposed to high glucose. Methods : The cytoprotective effect of MR was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The antioxidative effect was measured in terms of generation amount of ${\cdot}O_2^-$ by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), NO by 4,5-diaminofluorescein (DAF-2), $ONOO^-$ by dihydrorhodamine 123 (DHR 123) in the high glucose -treated LLC-$PK_1$ cells. Western blotting was performed using anti-AGE, anti-RAGE, anti-MAPKs(ERK1/2, JNK, p38), anti-PI3K, anti-Akt, and anti-NF-${\kappa}$B (p50, p65) respectively. Results : MR extract reduced cell death and inhibited the generation of ${\cdot}O_2^-$, NO, $ONOO^-$ in the high glucose-treated LLC-$PK_1$ cells. MR inhibited the expression of AGE, RAGE, MAPKs, PI3K, and Akt by means of decreasing NF-${\kappa}$B activation. MR also inhibited NF-${\kappa}$B activation itself. Conclusions : These results indicate MR has cytoprotective, antioxidative, and anti-inflammatory effects. Therefore it is suggested that MR might prevent and cure diabetes and its complications.

Effects of Sohaphyang-won on the Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells (배양한 흰쥐 대뇌세포의 저산소증 모델에서 소합향원이 유전자 표현에 미치는 영향)

  • 백진원;이영효;김완식;정승현;신길조;이원철
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.127-137
    • /
    • 2004
  • Objectives : The purpose of this investigation was to evaluate the effects of Sohaphyang-won (SH) on the alteration in gene expression in a hypoxia model using cultured rat cortical cells. Methods : E18 rat cortical cells were grown in neurobasal medium containing B27 supplement. On 12 DIV, SH was added ($20\mu\textrm{g}/ml$) to the culture media for 24 hrs. On 14 DIV, cells were given a hypoxic insult (2% O2/5% CO2, $37^{\circ}C$, 3 hrs), returned to normoxia and cultured for another 24 hrs. Total RNA was prepared from SH-untreated (control) and -treated cultures and alteration in gene expression was analyzed by microarray using rat 5K-TwinChips. Results : Effects on some of the genes whose functions are implicated in neural viability are as follows: 1) For most of the genes altered in expression, the global M values were between -05 to +0.5, Among these, 1517 genes were increased in their expression by more than global M +0.1, while 1480 genes were decreased by more than global M -0.1. 2) The expression of apoptosis-related genes such as Bad (global M =0.35), tumor protein p53 (T53) (global M =0.28) were increased, while v-akt murine thymoma viral oncogene homolog 1 (Akt1) was decreased. 3) The expression of hemoglobin alpha 1 (probably neuroglobin) was increased by about 3.2-fold (global M =1.7). 4) The expression of antioxidation-related catalase gene was increased (global M =0.26). 5) The expression of PKCzeta (prkcz), an upstream kinase of MAPK, was increased (global M =0.29). 6) The expression of retinoic acid receptor alpha (RAR), which may regulate transcription in hypoxic stress, was increased (global M =10.27). Conclusions : In summary, the microarray data suggest that SH doesn't increase the expression of oxygen capture-, anti-oxidation- and 'response to stress' -related genes but decreases some anti-apoptosis genes which would help protect the hypoxic cells from apoptosis.

  • PDF

The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice

  • Jun Ho Lee;Tae-Jin Kim;Jie Wan Kim;Jeong Seon Yoon;Hyuk Soon Kim;Kyung-Mi Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.242-248
    • /
    • 2016
  • Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis.