• Title/Summary/Keyword: Akaike Information Criteria

Search Result 41, Processing Time 0.026 seconds

Development of drought frequency analysis program (가뭄빈도해석 프로그램 개발)

  • Lee, Jeong Ju;Kang, Shin Uk;Chun, Gun Il;Kim, Hyeon Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.14-14
    • /
    • 2020
  • 일반적으로 수문빈도해석은 치수계획 수립에 이용되는 설계강수량, 계획홍수량 등을 산정하기 위해 연최대치계열 또는 연초과치계열 자료를 이용한 극치빈도해석을 수행하고, 확률분포의 우측꼬리(right tail) 부분을 이용하여 확장된 재현기간에 해당하는 확률수문량을 추정한다. 하지만 가뭄 관련 분석에서는 확률분포의 좌측꼬리(left tail) 부분은 이용해 확장된 재현기간별 확률수문량을 추정해야할 경우가 발생한다. 또한 물관리 실무에서 장 단기 운영계획 수립을 위해 이용하는 갈수빈도 유입량 산정 등에서도 평년보다 작은 수문량에 대한 빈도해석이 필요한 경우가 있다. 국가 가뭄정보분석센터에서는 기존에 K-water연구원에서 개발한 빈도해석 프로그램인 K-FAT의 분석모듈을 이용해 극소치계열 또는 갈수빈도 유입량 분석에 특화된 가뭄빈도해석 프로그램을 개발하였다. 본 프로그램은 GEV, Gumbel, Weibull 등 14개의 확률분포형을 포함하며, 모멘트법, 최우도법 및 L-모멘트법을 사용하여 매개변수를 추정한다. 적합도 검정의 경우 χ2, K-S, CVM, PPCC 및 수정 Anderson-Darling test를 이용하여 다각적인 검정을 할 수 있도록 하였다. 분석을 위한 입력 자료의 경우 사용자가 전처리를 통해 준비한 연최소치계열 등 연도별 시계열자료를 이용할 수 있으며, 일단위 및 월단위의 강수량 또는 댐 유입량 자료를 이용해 사용자가 원하는 기간의 누적강수량, 평균 유입량으로 변환할 수 있는 자료변환 기능을 추가하여 실무 활용성을 높였다. 또한 최적 확률분포 선정을 위해 참고할 수 있도록 AIC(Akaike information criteria)와 BIC(Bayesian information criteria) 분석이 포함되어 있으며, Bootstrap 기법 등을 이용한 불확실성 산정을 통해 추정 값의 신뢰구간을 표시하도록 하였다. 개발된 프로그램은 베타버전 시험배포를 거쳐 가뭄정보포털을 통해 배포할 예정이다.

  • PDF

The Auto Regressive Parameter Estimation and Pattern Classification of EKS Signals for Automatic Diagnosis (심전도 신호의 자동분석을 위한 자기회귀모델 변수추정과 패턴분류)

  • 이윤선;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.93-100
    • /
    • 1988
  • The Auto Regressive Parameter Estimation and Pattern Classification of EKG Signal for Automatic Diagnosis. This paper presents the results from pattern discriminant analysis of an AR (auto regressive) model parameter group, which represents the HRV (heart rate variability) that is being considered as time series data. HRV data was extracted using the correct R-point of the EKG wave that was A/D converted from the I/O port both by hardware and software functions. Data number (N) and optimal (P), which were used for analysis, were determined by using Burg's maximum entropy method and Akaike's Information Criteria test. The representative values were extracted from the distribution of the results. In turn, these values were used as the index for determining the range o( pattern discriminant analysis. By carrying out pattern discriminant analysis, the performance of clustering was checked, creating the text pattern, where the clustering was optimum. The analysis results showed first that the HRV data were considered sufficient to ensure the stationarity of the data; next, that the patern discrimimant analysis was able to discriminate even though the optimal order of each syndrome was dissimilar.

  • PDF

Prodiction of Walleye Pollock , Theragra Chalcogramma , Landings in Korea by Time Series Analysis : AIC (시계열분석을 이용한 한국 명태어업의 어획량 예측 : AIC)

  • Park, Hae-Hoon;Yoon, Gab-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.3
    • /
    • pp.235-240
    • /
    • 1996
  • Forecasts of monthly landings of walleye pollock, Theragra chalcogramma, in Korea were carried out by the seasonal Autoregressive Integrated Moving Average(ARlMA) model. The Box - Cox transformation on the walleye pollock catch data handles nonstationary variance. The equation of Box - Cox transformation was Y'=($Y^0.31$_ 1)/0.31. The model identification was determined by minimum AIC(Akaike Information Criteria). And the seasonal ARlMA model is presented (1- O.583B)(1- $B^1$)(l- $B^12$)$Z_t$ =(l- O.912B)(1- O.732$B^12$)et where: $Z_t$=value at month t ; $B^p$ is a backward shift operator, that is, $B^p$$Z_t$=$Z_t$-P; and et= error term at month t, which is to forecast 24 months ahead the walleye pollock landings in Korea. Monthly forecasts of the walleye pollock landings for 1993~ 1994, which were compared with the actual landings, had an absolute percentage error(APE) range of 20.2-226.1 %. Thtal observed annual landings in 1993 and 1994 were 16, 61OM/T and 1O, 748M/T respectively, while the model predicted 10, 7 48M/T and 8, 203M/T(APE 37.0% and 23.7%, respectively).

  • PDF

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

Survival Analysis for White Non-Hispanic Female Breast Cancer Patients

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Stewart, Tiffanie Shauna-Jeanne;Bhatt, Chintan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4049-4054
    • /
    • 2014
  • Background: Race and ethnicity are significant factors in predicting survival time of breast cancer patients. In this study, we applied advanced statistical methods to predict the survival of White non-Hispanic female breast cancer patients, who were diagnosed between the years 1973 and 2009 in the United States (U.S.). Materials and Methods: Demographic data from the Surveillance Epidemiology and End Results (SEER) database were used for the purpose of this study. Nine states were randomly selected from 12 U.S. cancer registries. A stratified random sampling method was used to select 2,000 female breast cancer patients from these nine states. We compared four types of advanced statistical probability models to identify the best-fit model for the White non-Hispanic female breast cancer survival data. Three model building criterion were used to measure and compare goodness of fit of the models. These include Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC). In addition, we used a novel Bayesian method and the Markov Chain Monte Carlo technique to determine the posterior density function of the parameters. After evaluating the model parameters, we selected the model having the lowest DIC value. Using this Bayesian method, we derived the predictive survival density for future survival time and its related inferences. Results: The analytical sample of White non-Hispanic women included 2,000 breast cancer cases from the SEER database (1973-2009). The majority of cases were married (55.2%), the mean age of diagnosis was 63.61 years (SD = 14.24) and the mean survival time was 84 months (SD = 35.01). After comparing the four statistical models, results suggested that the exponentiated Weibull model (DIC= 19818.220) was a better fit for White non-Hispanic females' breast cancer survival data. This model predicted the survival times (in months) for White non-Hispanic women after implementation of precise estimates of the model parameters. Conclusions: By using modern model building criteria, we determined that the data best fit the exponentiated Weibull model. We incorporated precise estimates of the parameter into the predictive model and evaluated the survival inference for the White non-Hispanic female population. This method of analysis will assist researchers in making scientific and clinical conclusions when assessing survival time of breast cancer patients.

Statistical Estimates from Black Non-Hispanic Female Breast Cancer Data

  • Khan, Hafiz Mohammad Rafiqullah;Ibrahimou, Boubakari;Saxena, Anshul;Gabbidon, Kemesha;Abdool-Ghany, Faheema;Ramamoorthy, Venkataraghavan;Ullah, Duff;Stewart, Tiffanie Shauna-Jeanne
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8371-8376
    • /
    • 2014
  • Background: The use of statistical methods has become an imperative tool in breast cancer survival data analysis. The purpose of this study was to develop the best statistical probability model using the Bayesian method to predict future survival times for the black non-Hispanic female breast cancer patients diagnosed during 1973-2009 in the U.S. Materials and Methods: We used a stratified random sample of black non-Hispanic female breast cancer patient data from the Surveillance Epidemiology and End Results (SEER) database. Survival analysis was performed using Kaplan-Meier and Cox proportional regression methods. Four advanced types of statistical models, Exponentiated Exponential (EE), Beta Generalized Exponential (BGE), Exponentiated Weibull (EW), and Beta Inverse Weibull (BIW) were utilized for data analysis. The statistical model building criteria, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) were used to measure the goodness of fit tests. Furthermore, we used the Bayesian approach to obtain the predictive survival inferences from the best-fit data based on the exponentiated Weibull model. Results: We identified the highest number of black non-Hispanic female breast cancer patients in Michigan and the lowest in Hawaii. The mean (SD), of age at diagnosis (years) was 58.3 (14.43). The mean (SD), of survival time (months) for black non-Hispanic females was 66.8 (30.20). Non-Hispanic blacks had a significantly increased risk of death compared to Black Hispanics (Hazard ratio: 1.96, 95%CI: 1.51-2.54). Compared to other statistical probability models, we found that the exponentiated Weibull model better fits for the survival times. By making use of the Bayesian method predictive inferences for future survival times were obtained. Conclusions: These findings will be of great significance in determining appropriate treatment plans and health-care cost allocation. Furthermore, the same approach should contribute to build future predictive models for any health related diseases.

Simulation Study on Model Selection Based on AIC under Unbalanced Design in Linear Mixed Effect Models (불균형 자료에서 AIC를 이용한 선형혼합모형 선택법의 효율에 대한 모의실험 연구)

  • Lee, Yong-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1169-1178
    • /
    • 2010
  • This article consider a performance model selection based on AIC under unbalanced deign in linear mixed effect models. Vaida and Balanchard (2005) proposed conditional AIC for model selection in linear mixed effect models when the prediction of random effects is of primary interest. Theoretical properties of cAIC and related criteria have been investigated by Liang et al. (2008) and Greven and Kneib (2010). However, all of the simulation studies were performed under a balanced design. Even though functional form of AIC remain same even under the unbalanced deign, it is worthwhile to investigate performance of AIC based model selection criteria under the unbalanced design. The simulation study in this article shows how unbalancedness affects model selection in linear mixed effect models.

Multiphasic Analysis of Growth Curve of Body Weight in Mice

  • Kurnianto, E.;Shinjo, A.;Suga, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The present study describes the analysis of the multiphasic growth function (MGF) to body weight in laboratory and wild mice. Three genetic groups of laboratory mice (Mus musculus domesticus) designated $CF_{{\sharp}1}$, C3H/HeNCrj and C57BL/6NCrj, and a genetic group of Yonakuni wild mice (Mus musculus molossinus yonakuni, Yk) were used. Mean body weights of each genetic group-sex subclass from birth to 69 days of age taken at 3-day intervals were analyzed by a monophasic, diphasic and triphasic functions for describing growth patterns. A comparison among the three functions of the MGF was based on the goodness-of-fit criteria: residual standard deviation (RSD), adjusted R-square (Adj $R^2$) and Akaike's information criterion (AIC). Result of this study indicated that body weight averaged heavier for males than for females. Among the four genetic groups within both sexes, $CF_{{\sharp}1}$ showed the highest, subsequent followed by C3H/HeNCrj, C57BL/6NCrj and Yk. Comparison among the three functions revealed that the triphasic function was the best fit to growth data, with the lowest RSD, the highest Adj $R^2$ and the lowest AIC, for the four genetic groups. For the triphasic function, RSD within each genetic group-sex subclass was similar for males and females. Adj $R^2$ was 0.999 for all genetic group-sex subclasses. AIC for laboratory mice males and females ranged from -70.48 to 66.50 and from -92.81 to -68.64, respectively; whereas for Yk wild mice males was -74.29 and females -78.42.

Mesh Selectivity of Durm Net Fish Trap for Elkhorn sculpin(Alcichthys alcicornis) in the Eastern Sea of Korea (동해의 장구형 통발에 대한 빨간횟대 (Alcichthys alcicornis)의 망목선택성)

  • Park, Hae-Hoon;Jeong, Eui-Cheol;An, Heui-Chun;Park, Chang-Doo;Kim, Hyun-Young;Bae, Jae-Hyun;Cho, Sam-Kwang;Baik, Chul-In
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • The mesh selectivity of the drum net fish trap for elkhorn sculpin(Alcichthys alcicornis) in the estern sea of Korea was described. The selection curve for the elkhorn sculpin caught from the experiments between June 2003 and December 2003 was by SELECT(Share Each Length Class's Catch Total)model and by Kitahaa's method to a polynomial equation and two parameter logistic selection curve. The selection curve by SELECT model showed to be equal probability of entrance of the elkhorn sculpin in the large(55mm) and small(20mm) mesh traps by minimum AIC (Akaike Information Criteria). The equation of selectivity curve obtained by Kitahara's method using a logistic function with least square method was $s(R)\;=\;\frac{1}{1+exp(-0.3545R+2.141)$, where R=1/m, and/and m are total length and mesh size, respectively. The mesh selectivity curve showed that the current regulated mesh size(35mm) for the trap was corresponded to 21.4cm in the $L_{50}$of the selection curve for the elkhorn sculpin.

Survival Analysis of Gastric Cancer Patients with Incomplete Data

  • Moghimbeigi, Abbas;Tapak, Lily;Roshanaei, Ghodaratolla;Mahjub, Hossein
    • Journal of Gastric Cancer
    • /
    • v.14 no.4
    • /
    • pp.259-265
    • /
    • 2014
  • Purpose: Survival analysis of gastric cancer patients requires knowledge about factors that affect survival time. This paper attempted to analyze the survival of patients with incomplete registered data by using imputation methods. Materials and Methods: Three missing data imputation methods, including regression, expectation maximization algorithm, and multiple imputation (MI) using Monte Carlo Markov Chain methods, were applied to the data of cancer patients referred to the cancer institute at Imam Khomeini Hospital in Tehran in 2003 to 2008. The data included demographic variables, survival times, and censored variable of 471 patients with gastric cancer. After using imputation methods to account for missing covariate data, the data were analyzed using a Cox regression model and the results were compared. Results: The mean patient survival time after diagnosis was $49.1{\pm}4.4$ months. In the complete case analysis, which used information from 100 of the 471 patients, very wide and uninformative confidence intervals were obtained for the chemotherapy and surgery hazard ratios (HRs). However, after imputation, the maximum confidence interval widths for the chemotherapy and surgery HRs were 8.470 and 0.806, respectively. The minimum width corresponded with MI. Furthermore, the minimum Bayesian and Akaike information criteria values correlated with MI (-821.236 and -827.866, respectively). Conclusions: Missing value imputation increased the estimate precision and accuracy. In addition, MI yielded better results when compared with the expectation maximization algorithm and regression simple imputation methods.