• Title/Summary/Keyword: Airway Inflammation

Search Result 251, Processing Time 0.026 seconds

A Review of Marine Algae-derived Therapeutic Agents for Respiratory Disease Asthma (해조류 유래 호흡기 질환 천식 치료제 연구 동향)

  • Kim, Tae-Hee;Heo, Seong-Yeong;Oh, Gun-Woo;Kim, Min-Sung;Choi, Il-Whan;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Asthma is a complex inflammatory disease of the lung characterized by variable airflow obstruction, airway hyperresponsiveness, airway inflammation, and reduction of respiratory function. Its prevalence and incidence are increasing because of the effect of various environmental and lifestyle risk factors. Steroid inhalation, long-acting agonists, and other synthetic drugs are used for the treatment of this disease. However, they have some side effects and show unsatisfied result and response after treatment. Therefore, many researchers have focused on the development of natural product-related treatment for asthma to suppress the side effects and unsatisfied results. Seaweeds contain various bioactive compounds with anti-inflammatory, antibacterial, and anti-oxidant activities. Thus, we investigated the asthma treatment-related literature using marine algae via the Google scholar search engine. Consequently, the literature is rarely investigated, but is increasing steadily. The literature was performed as a comparison study with an ovalbumin-induced group or drug-treated group, and investigated the antiasthma activity of algae ethanol extract. Although many researchers have studied marine algae-derived therapeutic agents for asthma, the amount of literature is rare compared with those of herbal medicine-derived therapeutic agents. Conclusively, we suggest that many researchers should investigate and develop algae-derived therapeutic agents for asthma treatment.

Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma

  • Park, Jun-Ho;Kim, Jong-Won;Lee, Chang-Min;Kim, Yeong-Dae;Chung, Sung-Woon;Jung, In-Duk;Noh, Kyung-Tae;Park, Jin-Wook;Heo, Deok-Rim;Shin, Yong-Kyoo;Seo, Jong-Keun;Park, Yeong-Min
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.311-316
    • /
    • 2012
  • Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane), belonging to a family of natural compounds that are abundant in broccoli, has received significant therapeutic interest in recent years. However, the molecular basis of its effects remains to be elucidated. In this study, we attempt to determine whether sulforaphane regulates the inflammatory response in an ovalbumin (OVA)-induced murine asthma model. Mice were sensitized with OVA, treated with sulforaphane, and then challenged with OVA. Sulforaphane administration significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Additionally, sulforaphane suppressed the increase in the levels of SOCS-3 and GATA-3 and IL-4 expression in the OVA-challenged mice. Collectively, our results demonstrate that sulforaphane regulates Th2 immune responses. This sutdy provides novel insights into the regulatory role of sulforaphane in allergen-induced Th2 inflammation and airway responses, which indicates its therapeutic potential for asthma and other allergic diseases.

Anti-asthmatic activities of Cypress oil in a mouse model of allergic asthma (마우스 모델을 이용한 사이프러스 오일의 알러지성 천식 억제 효과)

  • Sueng, Yun-Cheal;Chung, Kyu-Jin;Cheong, Kwang-Jo
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.341-351
    • /
    • 2015
  • This study was aimed to evaluate the effects of Cypress oil(CS) on anti-asthmatic activities in a mouse model of allergic asthma. Using an Ovalbumin-induced allergic asthma mouse model, 0.3% of CS was administered to experimental group using a nebulizer for 3 weeks on a basis of 3 times per week and 30min each time. The degree of airway hypersensitivity, the number of eosinophil in white blood cells, the number of immune cells and the change of cytokine in lung tissue were evaluated. The degree of airway hypersensitivity, the number of eosinophil, IL-5 and IL-13 levels in lung tissue, IgE in serum, the number of CCR3, CD3, CD4 cells were significantly decreased in experimental group treated with CS. These results suggested that CS may have a positive effects on Th2 cytokine and eosinophils which are major factors of asthma responses. Therefore CS might be of therapeutic value in treating asthma.

Lutein Modulates Th2 Immune Response in Ovalbumin-Induced Airway Inflammation (Ovalbumin으로 유도한 천식 생쥐모델에서 lutein의 Th2 면역반응 연구)

  • Song, Jun-Young;Lee, Chang-Min;Lee, Min-Ki
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.298-305
    • /
    • 2012
  • The general term flavonoids is often used to categorize a family of natural compounds that are highly abundant in all higher plants, and which in recent years have attracted scientific interest as therapeutics. Lutein is a xanthophyll and one of 600 known naturally occurring carotenoids. It is found in green vegetables such as spinach and kale, and has been demonstrated to exert anti-inflammatory activities. However, its anti-allergic effect in the Th1/Th2 immune response is poorly understood. In this study, we attempt to determine whether lutein regulates inflammatory mediators in an ovalbumin (OVA)-induced murine asthma model. To address this, mice were sensitized and challenged with OVA, and then treated with lutein before the last OVA challenge. Administration of lutein significantly suppressed the OVA-induced airway hyper-responsiveness. It also resulted in a significant alleviation of the infiltration of inflammatory cells into the bronchoalveolar lavage. Additionally, lutein attenuated the increased expression of Th2 responses in OVA-challenged mice. These results demonstrate that lutein is a potent inhibitor that reduces Th2 immune responses. Furthermore, they show that the immunopharmacological function is mediated by a pathway that involves and is regulated by Th2 immune response.

Role of Interleukin-4 (IL-4) in Respiratory Infection and Allergy Caused by Early-Life Chlamydia Infection

  • Li, Shujun;Wang, Lijuan;Zhang, Yulong;Ma, Long;Zhang, Jing;Zu, Jianbing;Wu, Xuecheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1109-1114
    • /
    • 2021
  • Chlamydia pneumoniae is a type of pathogenic gram-negative bacteria that causes various respiratory tract infections including asthma. Chlamydia species infect humans and cause respiratory infection by rupturing the lining of the respiratory which includes the throat, lungs and windpipe. Meanwhile, the function of interleukin-4 (IL-4) in Ch. pneumoniae respiratory infection and its association with the development of airway hyperresponsiveness (AHR) in adulthood and causing allergic airway disease (AAD) are not understood properly. We therefore investigated the role of IL-4 in respiratory infection and allergy caused by early life Chlamydia infection. In this study, Ch. pneumonia strain was propagated and cultured in HEp-2 cells according to standard protocol and infant C57BL/6 mice around 3-4 weeks old were infected to study the role of IL-4 in respiratory infection and allergy caused by early life Chlamydia infection. We observed that IL-4 is linked with Chlamydia respiratory infection and its absence lowers respiratory infection. IL-4R α2 is also responsible for controlling the IL-4 signaling pathway and averts the progression of infection and inflammation. Furthermore, the IL-4 signaling pathway also influences infection-induced AHR and aids in increasing AAD severity. STAT6 also promotes respiratory infection caused by Ch. pneumoniae and further enhanced its downstream process. Our study concluded that IL-4 is a potential target for preventing infection-induced AHR and severe asthma.

Protective Effect of Paulownia tomentosa Fruits in an Experimental Animal Model of Acute Lung Injury

  • Kim, Seong-Man;Ryu, Hyung Won;Kwon, Ok-Kyoung;Min, Jae-Hong;Park, Jin-Mi;Kim, Doo-Young;Oh, Sei-Ryang;Lee, Seung Jin;Ahn, Kyung-Seop;Lee, Jae-Won
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.310-318
    • /
    • 2022
  • The fruits of Paulownia tomentosa (Thunb.) (PT) Steud. have been reported to exert a variety of biological activities. A previous study confirmed that compounds isolated from PT fruits (PTF) exerted anti-inflammatory effects on TNF-α-stimulated airway epithelial cells. However, there is no report on the protective effects of PTF on acute lung injury (ALI). Here, we examined the ameliorative effects of PTF in an experimental animal model of lipopolysaccharide (LPS)-induced ALI. In ALI mice, increased levels of inflammatory cell influx were confirmed in the lungs of mice, and an increase of microphage numbers, TNF-α, IL-6 and MCP-1 production and protein content were detected in mouse bronchoalveolar lavage fluid. However, these increases were significantly reversed with PTF pretreatment. In addition, PTF inhibited the increased expression of iNOS and COX-2 in the lungs of ALI mice. Furthermore, the upregulation of MAPK and NF-κB activation was decreased in the lungs of ALI mice by PTF. In the in vitro experiment, PTF pretreatment exerted an anti-inflammatory effect by inhibiting the secretion of nitric oxide, TNF-α and IL-6 in LPS-stimulated RAW264.7 macrophages. Collectively, these results indicated that PTF has ameliorative effects on airway inflammation in an experimental animal model of ALI.

Recurrent Bronchopneumonia in Bronchiectasis, Despite Antibiotic Treatment: A Case Report on Combined Treatment with Korean and Western Medicine (항생제 치료에도 반복되는 기관지확장증 환자의 기관지폐렴에 대한 한양방 복합 치험 1례)

  • Jeong-Won Shin;Jiwon Park;Su-Hyun Chin;Hee-Jae Jung;Kwan-Il Kim;Beom-Joon Lee
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.2
    • /
    • pp.287-302
    • /
    • 2024
  • Background: Bronchiectasis is a chronic respiratory condition leading to recurrent respiratory infections. Despite the use of antibiotics and other standard treatments, managing bronchiectasis remains challenging due to the frequent recurrence of airway infections and concerns about antimicrobial resistance. Given these challenges, traditional Korean medicine (TKM) has gained attention due to its potential to reduce the frequency of respiratory infections, possibly minimizing the need for antibiotics. Case report: A 59-year-old female with bronchiectasis experienced recurrent pneumonia and was treated with antibiotics for over 2 weeks without any significant improvement in clinical symptoms. She received comprehensive Korean medicine treatment, including herbal medicine (Sikyungbanha-tang combined with Bigwabojungikki-tang-gami), acupuncture, and Chuna manual therapy, for pulmonary rehabilitation. Post-treatment, clinically meaningful improvements were observed in symptoms, serum C-reactive protein (CRP) levels, and bronchopneumonic lesions on chest X-rays. Conclusion: This case suggests that complex traditional Korean medicine treatments for recurrent chronic airway inflammation due to bronchiectasis can lead to clinically significant improvements in symptoms and help to prevent recurrence.

The Effects of Gamchomahwang-tang extract According to the ratio of 2 compounds on the Ovalbumin-Induced Allergic Asthma in Mice (甘草麻黃湯 추출물의 배합 비율에 따른 투여가 Ovalbumin으로 유발된 천식 생쥐에 미치는 영향)

  • Jo, So-Hyun;Jo, Eun-Hee;Park, Min-Cheol
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.4
    • /
    • pp.74-91
    • /
    • 2015
  • Background and Objective : Asthma is a chronic inflammatory disease at the mucosa and is associated with excess production of Th2 cytokine and eosinophil accumulation in lung.Gamchomahwang-tangextract(GME) is one of the well known prescription used in oriental medicine for treating asthma. This study was designed to compare the anti-asthmatic effect of GME according to the ratio of 2 compounds.Methods : To examine the effects of GME on asthma, mice were sensitized with 100 ㎍ of OVA and 1 ㎎ of aluminum potassium sulfate(Alum; Sigma) intraperitoneally on day 1 and 15. From day 22, mice were challenged on 3 consecutive days with 5% OVA. The anti-asthmatic effects of GME were evaluated by enhanced pause(Penh), bronchoalveolar lavage fluids (BALF), inflammatory cytokine production and genes expression, serum IgE production. and histological change in lung tissue. GMEⅠ consists of ES and GU in the proportion 2:1(300 ㎎/㎏ group), GMEⅡ consist of ES and GU in the proprtion 4:1(300 ㎎/㎏ group).Results : GMEⅠ,Ⅱ generally inhibited lung inflammation, inflammatory cells infiltration and cytokine production and gene expression such as IL-4, IL-5 and IL-13 in BALF and serum IgE level. GMEⅡ significantly reduced the cytokine production and gene expression such as IL-4, IL-5 and IL-13 in BALF and GMEⅠ decreased cytokine production of IL-4, IL-13 in BALF and gene expression of IL-4, IL-5 in Lung. GMEⅡ potently inhibited the development of Penh and also reduced the number of eosinophil during OVA-induced AHR(airway hyper-reactivity). Overall the results show that GMEⅡ has more effect on inhibiting production, gene expression of cytokine, serum IgE level and development of Penh than GMEⅠ. Consequently, GMEⅡ might be more effective than GMEⅠ at inhibiting allergic asthma on the OVA-induced mice model.Conclusion : These results indicate that GME has a deep inhibitory effects on airway inflammation and hyperresponsiveness in mice model of asthma and that suppression of IL-4, IL-5, IL-13 expression and decrease of IL-4, IL-5, IL-13 production in BALF might contribute this effect. Hence, the results indicate that GME might be useful herbal medicine of allergic asthma. As a result, GMEⅡ mght be superior to GMEⅠ in the aspect of anti-asthmatic effect on the OVA-induced mice model.

Experimental Study on Anti-inflammatory, Antitussive, and Expectoration Effects of Friltillariae Thunbergii Bulbus (절패모(浙貝母)의 항염 및 진해거담 효과에 대한 실험연구)

  • Kim, Jin Hoo;Yang, Won Kyung;Lee, Su Won;Lyu, Yee Ran;Kim, Seung Hyung;Park, Yang Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.3
    • /
    • pp.339-349
    • /
    • 2020
  • Objective: This study aimed to evaluate anti-inflammatory and antitussive expectoration effects of Friltillariae Thunbergii Bulbus (FTB) in a mouse model. Materials and Methods: To evaluate the anti-inflammatory effects of the FTB, we conducted in vitro experiments using RAW264.7 cells. An MTT assay and enzyme-linked immunosorbent assay (ELISA) were carried out to examine the anti-inflammatory effects of FTB. The expectorant effect on phenol red secretion, the antitussive effect on cough induced by ammonia solution, and leukocyte increased inhibition effects in acute airway inflammation in the animal model were confirmed. Results: FTB did not show cytotoxicity in the experimental group at 10, 30, 50, 100, 300, or 500 ㎍/ml and significantly inhibited the increase of NO, TNF-α and IL-6 in the experimental groups at 30, 50, 100, 300, and 500 ㎍/ml concentrations. In sputum, cough, and acute airway inflammation animal models, FTB significantly increased phenol red secretion in the 400 mg/kg administration group. FTB significantly reduced the number of coughs and significantly increased cough delay time in both 200 and 400 mg/kg dose groups. FTB decreased the white blood cell count in BALF (bronchoalveolar lavage fluid) in the 400 mg/kg administration group. Conclusion: Our study revealed that FTB elicits antitussive and expectorant effects by inhibiting inflammatory cytokines, increasing sputum secretion, suppressing cough, and reducing inflammatory cells. We concluded that FTB is a highly promising agent for respiratory tract infection with therapeutic opportunities.

Mycoplasma pneumoniae-induced production of proasthmatic mediators in airway epithelium (인체 기관지 상피세포에서 Mycoplasma pneumoniae 감염에 의한 천식 매개물질의 발현)

  • Kim, Kyung Won;Lee, Byung Chul;Lee, Kyung Eun;Kim, Eun Soo;Song, Tae Won;Park, Mi Yeoun;Sohn, Myung Hyun;Kim, Kyu-Earn
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.9
    • /
    • pp.977-982
    • /
    • 2006
  • Purpose : There has been an increasing amount of literature concerning the association between Mycoplasma pneumoniae and asthma pathogenesis. Interleukin(IL)-6 stimulates the differentiation of monocytes, and can promote Th2 differentiation and simultaneously inhibit Th1 polarization. IL-8 is a potent chemoattractant and, it has been suggested, has a role in asthma pathogenesis. Nitric oxide (NO) synthesized by airway epithelium may be important in the regulation of airway inflammation and reactivity. Vascular endothelial growth factor(VEGF) has been reported to be a mediator of airway remodeling in asthma. We investigated the effects of M. pneumoniae on IL-6, IL-8, NO and VEGF production in human respiratory epithelial cells. Methods : A549 cells were cultured and inoculated with M. pneumoniae at a dose of 20 cfu/cell. After infection, the presence of M. pneumoniae in epithelial cell cultures was monitored by immunofluorescence and confirmed by polymerase chain reaction(PCR) detection. IL-6, IL-8 and VEGF were determined by an enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. NO was measured using the standard Griess reaction. Results : In A549 cells, M. pneumoniaeinduced IL-6, IL-8, NO and VEGF release in time-dependent manners. It also induced mRNA expression of IL-6, IL-8 and VEGF in similar manners. Conclusion : These observations suggest that M. pneumoniae might have a role in the pathogenesis of the allergic inflammation of bronchial asthma.