• Title/Summary/Keyword: Airway Hyperresponsiveness

Search Result 99, Processing Time 0.033 seconds

Association of wheezing phenotypes with fractional exhaled nitric oxide in children

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.5
    • /
    • pp.211-216
    • /
    • 2014
  • Asthma comprises a heterogeneous group of disorders characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR). Airway inflammation, which induces AHR and recurrence of asthma, is the main pathophysiology of asthma. The fractional exhaled nitric oxide (FeNO) level is a noninvasive, reproducible measurement of eosinophilic airway inflammation that is easy to perform in young children. As airway inflammation precedes asthma attacks and airway obstruction, elevated FeNO levels may be useful as predictive markers for risk of recurrence of asthma. This review discusses FeNO measurements among early-childhood wheezing phenotypes that have been identified in large-scale longitudinal studies. These wheezing phenotypes are classified into three to six categories based on the onset and persistence of wheezing from birth to later childhood. Each phenotype has characteristic findings for atopic sensitization, lung function, AHR, or FeNO. For example, in one birth cohort study, children with asthma and persistent wheezing at 7 years had higher FeNO levels at 4 years compared to children without wheezing, which suggested that FeNO could be a predictive marker for later development of asthma. Preschool-aged children with recurrent wheezing and stringent asthma predictive indices also had higher FeNO levels in the first 4 years of life compared to children with wheezing and loose indices or children with no wheeze, suggesting that FeNO measurements may provide an additional parameter for predicting persistent wheezing in preschool children. Additional large-scale longitudinal studies are required to establish cutoff levels for FeNO as a risk factor for persistent asthma.

The Relationship between Indoor Air Pollutants and Pulmonary Function in Asthmatic Children with Mold Sensitization (곰팡이에 감작된 소아 천식 환자 가정내 환경유해물질 농도와 폐기능의 상관관계)

  • Yoon, Wonsuck;Lim, Jaehoon;Park, Sang Hyun;Lee, Mingyu;Yoo, Young
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.685-693
    • /
    • 2020
  • Objectives: Recent data indicate that sensitization to mold contributes to the severity and persistence of asthma. The aim of this study was to investigate relationships between indoor mold concentrations and pulmonary function parameters in asthmatic children with mold sensitization. Methods: Asthmatic subjects who had a positive result in skin-prick testing to more than one mold allergen, such as Alternaria, Aspergillus, or Penicillium, were enrolled. Their pulmonary function and methacholine challenge test results were collected. Measurements of blood eosinophil, serum IgE, and fractional exhaled nitric oxide (FeNO) were taken. Indoor levels of VOC, CO2, PM10 and PM2.5 in each subject's house were measured. We counted mold and bacteria colonies from the subjects' house air samples. Results: The mean levels of FEV1, FVC, FEV1/FVC, and FEF25-75 were 82.8±19.7, 87.3±17.9, 85.8±8.3, and 82.3±28.9%, respectively. The mean FeNO level was 19.8±11.2 ppb and the geometric mean (range of one SD) of methacholine PC20 was 3.99 mg/mL (0.67-23.74 mg/mL). The average indoor air pollutant levels were below the recommended levels set by the Ministry of Environment for multiplex buildings. Indoor mold levels showed a significant inverse correlation with methacholine PC20, but not with the baseline pulmonary function parameters. Conclusion: Indoor mold concentrations are a risk factor for increased bronchial hyperresponsiveness among asthmatic children with mold sensitization. Targeted environmental intervention should be considered for selected asthmatic children with mold sensitization for avoiding severe airway hyperresponsiveness.

Update in asthma management (천식치료의 최신지견)

  • Lee, Hae Ran
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.6
    • /
    • pp.581-588
    • /
    • 2006
  • Asthma is a chronic inflammation of the airway associated with increased bronchial hyperresponsiveness that leads to recurrent episodes of cough, wheezing, breathless, chest tightness. According the recent studies, repeated airway inflammation leads to structural changes so called 'airway remodeling' and associated with decreased pulmonary function. Airway remodeling begins form the early stage of asthma and the early diagnosis and management is very important to prevent airway remodeling. Medication for asthma can be classified into acute symptom reliever and chronic controller. Short acting beta2 agonist is a well-known reliever that reduced asthma symptoms within minutes. Controllers should be taken daily as a long-term basis to control airway inflammation. Inhaled corticosteroid(ICS) is the most effective controller in current use. However, in some patients ICS monotherapy is not sufficient to control asthma. In those cases, other medications such as long acting beta2 agonist, leukotriene modifier or sustained-release theophylline should be added to ICS, which called Add-on-Therapy. Combination inhaler devices are easy to use. Oral leukotriene modifier has a good compliance especially in children. Finally, as asthma is a chronic disease, the development of on-going partnership among health care professionals, the patients, and the patients' family is necessary for the effective management of asthma.

Airway hyperresponsiveness and etiology in patients with chronic cough (만성기침 환자의 원인적 고찰 및 기관지 과민성)

  • Kim, Kyung Ho;Lee, Gyu Taeg;Park, Sung Woo;Oh, Je Ho;Ki, Shin Young;Moon, Seung Hyug;Jeong, Sung Hwan;Kim, Hyun Tae;Uh, Soo Taek;Kim, Yong Hoon;Park, Choon Sik;Jin, Byung Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.1
    • /
    • pp.146-153
    • /
    • 1997
  • Background : Chronic cough is commomly defined as a persistent or recurrent cough exceeding 3 week's duration. The prevalence of chroinc cough is reported to range from 14% to 23 % for nonsmoking adults. The post nasal drip syndrome has been determined to be the most common cause of chronic cough, followed by asthma, chronic bronchitis, gastroesophageal reflux and bronchiectasis. Cough can be the only manifestation of asthma. Bronchial provocation tests are useful in diagnosing cough variant asthma. We investigated the clinical or laboratory findings and the incidence of airway hyperresponsiveness and evaluated the etiology in patients with chronic cough. Method : We evaluated 46 patients with chronic cough. Methacholine challenge test were done. Results : The results were as follows : 1) Thirty - five percent(16/46) of the chronic cough patients and 44% of the post nasal drip syndrom(7/16) showed the positive responses to methacholine challenge test 2) The underlying causes of chronic cough were post nasal drip syndrome in 35%, bronchitis in 21.7%, cough-variant asthma in 17.4%, and unknown condition in 25.9%. 3) Airway hyperresponsiveness in chronic cough was not related to respiratory symptom, nasal symptom, post nasal drip, smoking, derangement of ventilatory function, atopy, or sinusitis. Conclusion : Airway hyperresponsivenss in patients with chronic cough increased in frequency when compaired with normal control, allergic rhinitis. Cough-variant asthma account for 17.4% of patients with chronic cough.

  • PDF

Anti-inflammatory Effect of Boswellia sacra (Franckincense) Essential Oil in a Mouse Model of Allergic Asthma (알러지성 천식 모델 생쥐에서 프랑킨센스 에센셜 오일의 염증 억제 효과)

  • Lee, Hye-Youn;Yun, Mi-Young;Kang, Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.343-352
    • /
    • 2008
  • Frankincense, the gum resin derived from Boswellia species, is complex mixtures composed of about $5{\sim}9%$ highly aromatic essential oil, $65{\sim}85%$ alcohol-soluble resins, and the remaining water-soluble gums. The anti-inflammatory properties of frankincense, alcohole-soluble resins, are well-recognized, but the question of whether aromatic essential oil also plays a role in the allergic asthma remains unanswered. This study was performed to evaluate anti-inflammatory effects of Boswellia sacra essential oil (BSEO) on ovalbumin (OVA)-induced asthma mouse model. BALB/c mice after intraperitoneal OVA sensitization were challenged with intratracheal OVA. One experimental group was inhaled with 0.3% BSEO for the later 8 weeks. BALB/c mice were sensitized and challenged with OVA and developed airway eosinophilia, mucus hypersecretion, and airway hyperresponsiveness. In contrast, the BSEO treated mice had reduced a number of eosinophils among BALF cells, goblet cell hyperplasia, and airway hyperresponsiveness. Cytokine analysis of BALF revealed that BSEO caused an increase in Th1 cytokine (interferon-$\gamma$ (IFN-$\gamma$)) and a decrease in Th2 cytokines (interleukin-4 (IL-4), IL-5 and IL-13) levels. In addition, the OVA-specific serum IgE and eotaxin levels were also reduced. In mice inhaled BSEO, $CD4^+$, $CD3^+/CCR3^+$, and $B220^+/CD23^+$ mediastinal lymph nodes cells were also decreased. These results suggest that inhaled BSEO as a immunomodulator in Th1/Th2 mediated asthma may have therapeutic potential for the treatment in allergic airway inflammation by a simple, cost-effective way.

Pectolinarigenin ameliorated airway inflammation and airway remodeling to exhibit antitussive effect

  • Quan He;Weihua Liu;Xiaomei Ma;Hongxiu Li;Weiqi Feng;Xuzhi Lu;Ying Li;Zi Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.

Environmental tobacco smoke and childhood asthma

  • Song, Dae Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.121-128
    • /
    • 2010
  • In recent years, environmental tobacco smoke (ETS) has become an important worldwide public health issue. Children are particularly vulnerable to ETS because they are still developing. ETS exposure causes a wide range of adverse health effects on childhood asthma. There is convincing evidence that ETS exposure is causally associated with an increased prevalence of asthma, increased severity of asthma and worsening asthma control in children who already have the disease, even though a causal relationship with asthma onset is not yet established for asthma incidence. Mechanisms underlying these adverse effects of ETS are not clearly elucidated but e studies on this issue suggest that genetic susceptibility, impaired lung function, and augmented airway inflammation and remodeling may be involved. Children with asthma are just as likely to be exposed to ETS as children in general and there is no risk-free level of exposure. Therefore, providing a smoke-free environment may be of particular importance to the asthmatic children exposed to ETS who have adverse asthma outcomes, as well as to children with genetic susceptibility who are at increased risk of developing asthma upon exposure to ETS in early childhood.

Dexamethasone Does Not Inhibit Airway CXC Chemokine Expression and Neutrophilia in a Murine Model of Asthma - Mechanism of Steroid Resistance in Asthma

  • Lee, Young-Man;Kang, Nam-In;Lee, Hern-Ku
    • IMMUNE NETWORK
    • /
    • v.7 no.1
    • /
    • pp.18-25
    • /
    • 2007
  • Background: Although glucocorticoids (GCs) are effective in controlling asthma in the majority of patients, a subset of asthmatics fails to demonstrate a satisfactory response, even to systemic GC therapy. This population is referred to as being "steroid-resistant". The actual mechanism underlying steroid resistance in asthma remains to be elucidated. Methods: We have investigated how dexamethasone (DEX) regulates asthmatic phenotypes in a murine model of asthma, in which mice received i.p. immunization twice, followed by two bronchoprovocations with aerosolized OVA with a one-week interval, which we have recently described. Results: Pretreatment with DEX resulted in an inhibition of NF-${\kappa}B$ activation in asthmatic lungs, and also inhibited bronchoalveolar lavage (BAL) levels of NF-${\kappa}B$-dependent cytokines such as TNF-${\alpha}$ and CC chemokines [eotaxin and monocyte chemotactic protein (MCP)-1]. DEX was effective in suppressing airway hyperresponsiveness (AHR) at 10 h, Th2-dependent asthmatic phenotypes such as airway eosinophilia, BAL levels of Th2 cytokines (IL-5 and IL-13), and mucin production. However, DEX failed to suppress BAL levels of CXC chemokines [macrophage inflammatory protein-2 (MIP-2) and keratinocyte-derived chemokine (KC)] and airway neutrophilia. Conclusion: Airway neutrophilia is among the phenomena observed in patients with severe GC-resistant asthma. This study will provide insight into the molecular basis for airway neutrophila seen in steroid-resistant asthma. Further studies are required to delineate the underlying mechanism of CXC chemokine expression in asthma.

Expression of Muscarinic Receptors and the Effect of Tiotropium Bromide in Aged Mouse Model of Chronic Asthma

  • Kang, Ji Young;Kim, In Kyoung;Hur, Jung;Kim, Seok Chan;Lee, Sook Young;Kwon, Soon Seog;Kim, Young Kyoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.71-80
    • /
    • 2019
  • Background: Efficacy and safety of tiotropium bromide, a muscarinic receptor antagonist, in treatment of asthma have been reported. However, its effect on airway remodeling in chronic asthma of the elderly has not been clearly verified. The objective of this study was to investigate the effect of tiotropium and expression of muscarinic receptors as its related mechanism in an aged mouse model of chronic asthma with airway remodeling. Methods: BALB/c female mice age 6 weeks, 9 and 15 months were sensitized and challenged with ovalbumin (OVA) for three months. Tiotropium bromide was administered during the challenge period. Airway hyperresponsiveness (AHR) and pulmonary inflammation were measured. Parameters of airway remodeling, and expression levels of $M_2$ and $M_3$ receptors were examined. Results: Total cell with eosinophils, increased in the OVA groups by age, was decreased significantly after treatment with tiotropium bromide, particularly in the age group of 15 months. AHR and levels of interleukin (IL)-4, IL-5, and IL-13 were decreased, after tiotropium administration. In old aged group of 9- and 15-months-treated groups, hydroxyproline contents and levels of ${\alpha}$-smooth muscle actin were attenuated. Tiotropium enhanced the expression of $M_2$ but decreased expression of $M_3$ in all aged groups of OVA. Conclusion: Tiotropium bromide had anti-inflammatory and anti-remodeling effects in an aged mouse model of chronic asthma. Its effects seemed to be partly mediated by modulating expression $M_3$ and $M_2$ muscarinic receptors. Tiotropium may be a beneficial treatment option for the elderly with airway remodeling of chronic asthma.

The Effects of Sinapis Semen, Raphani Semen, and mixture decoction on the Asthmatic Mouse Model (백개자, 나복자 및 두 배합 약물의 천식 동물 모델에 대한 효과)

  • Kim, Chang-Min;Lee, Young Cheol;Lee, Jang-Cheon
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.15-23
    • /
    • 2013
  • Objectives : To clarify the possible effects of Sinapis Semen and Raphani Semen on the development of pulmonary eosinophilic inflammation in a asthmatic mouse model. Methods : BALBav/c mice were sensitized to OVA followed intratracheally and by aerosol allergene challenges. We investigated the effect of Sinapis Semen and Raphani Semen on airway hyperresponsiveness, eosinophiic infitratio, immune cell phenotype, The2 cytokine product, and OVA-spedific IgE production. Results : Total lung cells, eosinophils, and lung leukocytes, OVA specific IgE levels, and Th 2cytokine levels such as IL-5, IL-13, IL-17, TNF-alpha, and eotaxin in BALF were reduced compared with those of OVA sensitized asthma mice (control). The absolute numbers of $CD3^+$, $CD3^+/CD69^+$, $CD3^-/CCR3^+$, $CD4^+$, $CD8^+$, $Gr-1^+/CD11b^+$, $B220^+/CD22^+$, $B220^+/IgE^+$ cells in lung tissiues significantly reduced compared to those of control. Specially total lung cells in BALF and the absolute number of $CD3^+/CD69^+$ and, $B220^+/IgE^+$ cells in lung tissiue effectively reduced in Sinapis Semen plus Raphani Semen compared to those of Sinapis Semen and Raphani Semen. Conclusions : These results indicate that Sinapis Semen plus Raphani Semen has deep inhibitory effects on airway inflammation and hyperresponsiveness in asmatic mouse model and also has effect of suppression of IL-5, IL-13, IL-17, OVA specific IgE production in BALF. The results verified that Sinapis Semen, Raphani Semen, and Sinapis Semen plus Raphani Semen could act as a immunomodulator which possess anti-inflammatory and anti-asthmatic property by modulating the relationship of Th1/Th2 cytokine imbalance.