• Title/Summary/Keyword: Airport Runway Wind

Search Result 13, Processing Time 0.022 seconds

A Study on Development of Wind-Rose software for Planning Runway Direction at an Airport (활주로 방향설정을 위한 풍배도 프로그램의 개발 연구)

  • Sin, D.J.;Kim, D.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • An Analysis of wind is essential for planning runway direction. As a general rule, the principal traffic runway at an airport should be oriented as closely as practicable in the direction of the prevailing wind. Aircraft are able to maneuver on a runway as long as the wind component at right angles to the direction of landing and taking-off, the cross wind component, is not excessive. ICAO recommends that runway be oriented so that aircraft may be landed at least 95% of the time with allowable cross wind components not exceeding specified limits based upon the airport reference field length. Based on the recommendation, the direction of the runway or runways at an airport can be determined through graphical vector analysis on wind rose. This study is to develop the wind-rose software for planning the optimum runway direction at an airport with the raw wind data based on reliable wind distribution statistics that extend over as long as a period as possible, preferably of not less than 5 years.

  • PDF

A study on the reduction in angle of attack by the constructions in the vicinity of airport runway with crosswind (활주로 주변 건물을 지나는 측풍에 의한 이.착륙 항공기의 받음각 감소에 관한 연구)

  • Hong, Gyo-Young;Sheen, Dong-Jin;Park, Soo-Bok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper illustrates how simulation modeling can be of substantial help in designing constructions in the vicinity of airport runway and presents results about the influence of aircraft wake vortices through computer simulation. The cross-wind energy dissipation rate is estimated from the Y-directional velocity spectrum for a sample in a real meteorological observation data. The eddy region about cross wind in the vicinity of airport runway is highly dependent on the height and shape of the buildings and the AOA of aircraft is greatly influenced by Y-directional velocity occurred by dint of separation region in runway.

  • PDF

A study on the reduction in Ground Turbulence by the fence in the vicinity of airport runway (활주로 주변에 설치된 fence로 인한 Ground Turbulence의 감소 대한 연구)

  • Sheen, Dong-Jin;Hong, Gyo-Young;Kim, Young-In
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.32-41
    • /
    • 2009
  • This paper presents the work being carried out in order to reduce the ground turbulence by the fence in the vicinity of airport runway. In preliminary study, we knows that cross-wind effect in the vicinity of runway is highly dependent on the shape of the buildings and have predicted results confirmed reduction of wind-effect by doing that set up the building with a fence, terraced shape or gap. This study is to figure out effect of ground turbulence by the building with fence, which is changing fence height, in using two-dimensional computational fluid dynamics analysis.

  • PDF

A Study on the Pressure Patterns that Causes Bidirectional Tailwind on the Runway of Jeju International Airport (제주국제공항 활주로에 양배풍을 유발하는 기압 패턴에 관한 연구)

  • Jinho Cho;Kangmin Lee;Hojong Baik;Janghoon Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Jeju International Airport is characterized by the occurrence of low-level windshear due to its location, surrounding terrain, and its weather characteristics. Especially the low-level windshear accompanied by tailwinds on both sides of the runway i.e., bidirectional tailwind, is a hazardous weather phenomenon with unique characteristics that are difficult to find at any other airports. This study focuses on bidirectional tailwind occurrence at Jeju International Airport in 2020-2021. As a result, characteristic pressure patterns of the types that cause bidirectional tailwind was identified as it was possible to categorize strong wind types such as 1) strong southwest wind, 2) strong east wind, and 3) strong northwest wind, which do not cause bidirectional tailwind, and wind direction variation types such as 4) bidirectional tailwind, and 5) south wind followed by southwest wind, which cause bidirectional tailwind. The results of this study are expected to contribute to improving aviation safety by enabling aviation operators to predict and take appropriate safety measures based on their understanding of the causes and characteristics of bidirectional tailwind.

Empirical Analysis of Airplane Route for Reduction of Aircraft Noise at Gimhae International Airport (김해국제공항 항공기 소음 저감을 위한 비행기항적실증분석)

  • Kim, Bong-Ki;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.257-266
    • /
    • 2021
  • This study explored measures to reduce noise applicable to Gimhae international airport centering on densely packed housing areas. Especially, as for measures to relieve noise damage on the densely packed housing areas in Gimhae-si, the noise reduction effect is expected to be doubled if the west runway (36L/18R) is used as the preferred runway for the 36 direction takeoff, as well as if the flight bypasses the densely packed housing areas by means of sophisticated navigation using the area navigation (RNAV) procedure based on performance-based navigation (PBN). Takeoff toward the south connects the flight path to the South Sea which has comparatively low noise impact, relieving noise damage on the densely packed housing areas (apartment complexes in Naeoe-dong of Gimhae-si, etc.) near the northern end of the runway. The operation of the runway displaced threshold is currently being implemented on the west runway (36L/18R) of Gimhae international airport. It has been found that swing landing in spring and summer when the wind blows from the south has a noise reduction effect on the noise sensitive areas at the side and end of the west runway (Gangdong-dong and Jukdong-dong of Gangseo-gu and Buram-dong of Gimhae-si, etc.).

A Method for Reduction in Ground Turbulence by the Constructions in the Vicinity of Runway (활주로 주변 건물로 인하여 발생되는 Ground Turbulence 감소 방안)

  • Hong, Gyo-Young;Sheen, Dong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.820-830
    • /
    • 2009
  • This paper illustrates how simulation modeling can be reduced of ground turbulence by the constructions in the vicinity of airport runway and reports on a cause of ground turbulence using two-dimensional CFD analysis. Interesting result is that the shape in cross-section show the higher ground turbulence than the height of the building. The predicted results confirmed reduction of wind-effect by doing that set up the building with a fence, terraced shape or gap and it can generate turbulence in embryo at this stage. We knows that cross-wind effect in the vicinity of airport runway is highly dependent on the shape of the buildings.

  • PDF

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

The 3D numerical analysis on runway with the flow in direction perpendicular to the runway (활주로 방향에 수직인 유동이 활주로에 미치는 영향에 대한 3차원 수치해석)

  • Hong, Gyo-Young;Sheen, Dong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.479-488
    • /
    • 2010
  • The aim of this paper is to research the change in the turbulent flow and the AOA occurred by the wind perpendicular to the direction of runway according to the three-dimensional numerical analysis. The maximum amplitude of AOA variation on runway reached $6^{\circ}$ within 1 second because of the wake formed by the constructions in the vicinity of the airport. The overall effects appeared in aperiodic forms. It was also observed the rapid flow generated between the buildings shifted into the existing wake and eventually merged with it. It is expected thai the strong wake will cause instability during takeoff and landing.

Prediction of Near-Surface Winds on Airport Runways Using Machine Learning (기계학습을 활용한 공항 활주로 지상 바람의 예측)

  • Seung-Min Lee;Seung-Jae Lee;Harim Kang;Sook Jung Ham;Jae Ik Song;Ki Nam Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.3
    • /
    • pp.15-28
    • /
    • 2024
  • Wind forecast is one of the key meteorological factors required for safe aircraft takeoff and landing. In this study, we developed an artificial intelligence-based wind compensation method by learning the Korea Air Force Weather Research and Forecast (KAF-WRF) forecast data and the Airfield Meteorological Observation System (AMOS) data at five airports using Support Vector Machine (SVM). The SVM wind prediction models were composed of three types according to the learning period (30 days, 40 days, and 60 days) using seven KAF-WRF variables as training data, and the wind prediction performance at the five airports was evaluated using Root Mean Squared Errors (RMSE). According to the results, the SVM wind prediction model trained using U (east-west) and V (north-south) components performed approximately 18% better than the model trained using wind speed and wind direction. The wind correction of KAF-WRF with AMOS observations via SVM outperformed the conventional KAF-WRF wind predictions in eight out of ten cases, capturing abrupt changes in wind direction and speed with a 25% reduction in RMSE.

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.