• Title/Summary/Keyword: Airport Operations

Search Result 78, Processing Time 0.02 seconds

An Airline Scheduling Model and Solution Algorithms

  • AL-Sultan, Ahmed Thanyan;Ishioka, Fumio;Kurihara, Koji
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.257-266
    • /
    • 2011
  • The rapid development of airlines, has made airports busier and more complicated. The assignment of scheduled to available gates is a major issue for daily airline operations. We consider the over-constrained airport gate assignment problem(AGAP) where the number of flights exceeds the number of available gates, and where the objectives are to minimize the number of ungated flights and the total walking distance or connection times. The procedures used in this project are to create a mathematical model formulation to identify decision variables to identify, constraints and objective functions. In addition, we will consider in the AGAP the size of each gate in the terminal and also the towing process for the aircraft. We will use a greedy algorithm to solve the problem. The greedy algorithm minimizes ungated flights while providing initial feasible solutions that allow flexibility in seeking good solutions, especially in case when flight schedules are dense in time. Experiments conducts give good results.

A Note on the Selected Multicriteria Decision Methods and Their Applications

  • 홍순욱;조근태
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.107-132
    • /
    • 1999
  • In this study, we are concerned with the comparative aspects of five selected methods of decision making with respect to their adequacy in helping complex decisions about real-world problems. We examine the methods in terms of outlines, procedures and advantages/disadvantages to identify similarities and differences among them with the aim of showing which method is more likely to gain greater attention both in academia and in practice. To illustrate different courses of deployment of the methods, we offer an application with a case of airport transportation project in this paper. Some discussions on AHP and other methods are presented.

  • PDF

Proposed STAR Procedure of Incheon International Airport Considering Safety and Efficiency (인천공항 도착항공기의 안전 및 효율 향상을 위한 표준접근절차 수정방안 연구)

  • Chang, Jaeho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.292-297
    • /
    • 2016
  • Since continuous descent operations (CDO) is one of several tools available to aircraft operators and air navigation service providers (ANSPs) to increase safety, flight predictability, and airspace capacity while reducing noise, controller-pilot communications, fuel burn and emissions, widespread implementation of CDO would result in significant reductions in the environmental impact and aircraft operation costs in south korea as well. After analyzing each procedure from standard terminal arrival routes used for the Incheon international airport, it can be noticed that one of the procedures has a relatively high altitude constraint at initial approach fix than others, which lead the pilots to use unnecessary drag device in certain situations. Therefore we came to a conclusion that some arrival procedures need to be revised, so unnecessary procedure required during approach can be minimized, thereby reducing fuel consumption, noise and emissions compared to current approach procedures. And it is going to increase the safety margin significantly during approach phase due to reduced workload.

A Study on the Precursors of Aviation Turbulence via QAR Data Analysis (QAR 데이터 분석을 통한 항공난류 조기 인지 가능성 연구)

  • Kim, In Gyu;Chang, Jo Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.36-42
    • /
    • 2018
  • Although continuous passenger injuries and physical damages are repeated due to the unexpected aviation turbulence encountered during operations, there is still exist the limitation for preventing recurrence of similar events because the lack of real-time information and delay in technological developments regarding various operating conditions and variable weather phenomena. The purpose of this study is to compare and analyze the meteorological data of the aviation turbulence occurred and actual flight data extracted from the Quick Access Recorder(QAR) to provide some precursors that the pilot can identify aviation turbulence early by referring thru the flight instrumentation indications. The case applied for this study was recent event, a scheduled flight from Incheon Airport, Korea to Narita Airport, Japan that suddenly encountered turbulence at an altitude of approximately 14,000 feet during approach. According to the Korea Meteorological Administration(KMA)'s Regional Data Assessment and Prediction System(RDAPS) data, it was observed that the strong amount of vorticity in the rear area of jet stream, which existed near Mount Fuji at that time. The QAR data analysis shows significant changes in the aircraft's parameters such as Pitch and Roll angle, Static Air Temperature(SAT), and wind speed and direction in tens of seconds to minutes before encounter the turbulence. If the accumulate reliability of the data in addition and verification of various parameters with continuous analysis of additional cases, it can be the precursors for the pilot's effective and pre-emptive action and conservative prevention measures against aviation turbulence to reduce subsequent passenger injuries in the aviation operations.

A Study on the Altitude Restrictions of Obstructions outside Airport Obstacle Limitation Surfaces of Korea (한국의 비행장 장애물 제한구역 밖의 장애물이 항공안전에 미치는 영향에 관한 연구)

  • Yang, Han-Mo;Kim, Byung-Jong;Kim, Do-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.41-53
    • /
    • 2005
  • The effective utilization of an airport is considerably influenced by natural features and man-made structures inside and outside its boundary. These obstacles affect the airspace available for approaches and departures and the weather minima which dictates the necessary weather conditions for aircraft to be allowed to take-off or land. Certain areas of the airspace near airports must be regarded as the integral parts of the airport system. The availability of the required airspace is as important as are the runway and their associated strips to the safe and efficient use of the airport. For these reasons, ICAO and the member states have established the standards regarding the obstacle limitation surfaces and regulated the construction of the man-made structures in and beyond the surfaces. Existing objects that extend above a obstacle limitation surfaces should as for as practicable be removed except when, in the opinion of the appropriate authority, an objects is shielded an existing immovable objects, or after aeronautical study it is determined that the object would not adversely affect the safety or significantly affect the regularity of operations of airplanes. However, Korea's aviation law does not specified the outer horizontal surface in the obstacle limitation surfaces, while ICAO and most member states do. The absence of the outer horizontal surface regulation has created legal disputes between regulating agencies and private parties. The case study in this paper found that a skyscraper planned beyond Korea's obstacle limitation surfaces does affect the flight safety and the efficient use of an airport. Therefore, in areas beyond the obstacle limitation surfaces. those objects which extend to a height of 150m or more above ground elevation should be regarded as obstacle, unless a special aeronautical study indicates that they do not constitute a hazard to airplanes. We proposed low alternative regulatory schemes for resolving the issues raised in this paper, and we recommended to adopt ICAO's standards and recommended practices.

A Preliminary Study on Instrument Procedures and Frequency Interference with a planned Obstacle around an Airport (공항주변 계획된 장애물에 의한 계기절차 및 전파간섭 연구)

  • Kim, DoHyun;Hong, SeungBeom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.24-30
    • /
    • 2017
  • Obstacle defines all fixed and mobile objects, or parts thereof, that are located on an area intended for the surface movement of aircraft or extend above a defined surface intended to protect aircraft in flight or stand outside those defined surfaces and that have been assessed as being a hazard to air navigation. Aircraft operations are based on electronic supporting systems using radio frequencies to assist pilots. These frequencies can receive outside interference that change their courses or power, such as distortion, attenuation or reinforcements by an obstacle. This is a preliminary case study that shows the relation of instrument flight procedures and the degree of interferences introduced by a planned obstacle, which is a main bridge post, within the service volume of the radio navigation aids. For the purpose of this study, the case airport's data and it's VOR/DME and ILS systems' limitations are analyzed, as well as the relation of interferences between the obstacle and navigation aides were reviewed with the internal regulations in Korea.

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.

Occurrence of Uncommanded Turn Events on the Route and Relevant Mitigation Measures (항로 비행 중 Uncommanded turn 이벤트 발생 분석 및 경감조치 방안 연구)

  • Kim, Hyeon Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.515-520
    • /
    • 2020
  • The development of autopilot system and flight management system (FMS) equipment in today's aircraft navigation can be attributed to the reduction of pilots' workload and the navigation safety. The effect of autopilot and FMS equipment is greater, especially in heavy airport traffic or complicated of the departure. However, some airport specific departure procedures result in an uncommanded turn event due to an error in the FMS, causing aircraft to deviate from the center line of the route. With most departure procedures requiring area navigation (RNAV) operation, pilot situation awareness and corrective action are the only ways to minimize aircraft deviation to maintain the safety of area navigation. Through analysis of the occurrence status of the uncommended turn event by aircraft type, airport and flight phase, and comparative analysis of the survey results of foreign airlines and the airlines self-reduction plan with the aircraft manufacturer's corrective action, it is intended to give implications for the need for more fundamental measures to prevent recurrence of such events.

Measuring Environmental Efficiency of International Airports: DEA and DDF Approach (세계 주요 공항의 환경 효율성 분석에 관한 연구)

  • Lee, Seung-Eun;Choi, Jeong-Won;Kim, Sung-Ryong;Seo, Young-Joon
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.51-70
    • /
    • 2021
  • This study measured the environmental efficiency of 21 international airports based on sustainability reports issued by each airport for 2018. As many sectors in the industry paid attention to social and environmental responsibilities, airport operators comprise one of the leading sectors that streamlined their facilities to become increasingly sustainable and environmental. Nevertheless, studies on the environmental operations of airports are insufficient compared with studies on economic or operational efficiency. Therefore, the current study aims to determine any possible improvement in the environmental inefficiency of airports with the utilization of directional distance function (DDF) and to examine operational efficiency with the application of the data envelopment analysis (DEA). The majority of airports have operated their facilities efficiently, but not all have effectively managed pollutants generated by airports. Furthermore, many airports can still potentially reduce CO2 and water consumption. This study suggests several implementable environmental improvements to the aviation sector. Moreover, other industrial sectors may use the research as a benchmark for enhancing environmental efficiency.

A Study on the Air Traffic Control Rule and Optimal Capacity of Air Base (항공교통관제규칙과 비행장의 최적규모에 관한 연구)

  • Lee Ki-Hyun
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.177-184
    • /
    • 1976
  • As the organizational size of a military service or business increases and its management becomes complex, the success in its management depends less on static type of management but more on careful, dynamic type of management. In this thesis, an operations research technique is applied to the problems of determining optimal air traffic control rule and of optimal capacity of air base for a military air base. An airport runway is regarded as the service facility in a queueing mechanism, used by landing, low approach, and departing aircraft. The usual order of service gives priority different classes of aircraft such as landings, departures, and low approaches; here service disciplines are considered assigning priorities to different classes of aricraft grouped according to required runway time. Several such priority rules are compared by means of a steady-state queueing model with non-preemptive priorities. From the survey conducted for the thesis development, it was found that the flight pattern such as departure, law approach, and landing within a control zone, follows a Poisson distribution and the service time follows an Erlang distribution. In the problem of choosing the optimal air traffic control rule, the control rule of giving service priority to the aircraft with a minimum average waiting cost, regardless of flight patterns, was found to be the optimal one. Through a simulation with data collected at K-O O Air Base, the optimal take-off interval and the optimal capacity of aircraft to be employed were determined.

  • PDF