• Title/Summary/Keyword: Airfoil Impeller

Search Result 17, Processing Time 0.027 seconds

Effects of the Impeller Inlet Tip Clearance on the Flow and Performance of Airfoil Fans (임펠러 흡입구 간극이 원심형 에어포일 송풍기의 성능에 미치는 영향)

  • Kang, Shin-Hyoung;Kim, Young-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.957-968
    • /
    • 1999
  • Performance tests of an airfoil fan and measurement of flow fields at the impeller exit are carried out to investigate the effects of the tip clearance between the rotor and inlet casing on the impeller performance. The impeller is twelve bladed of NACA 65-810 airfoils and tested with 3 different size of gap; 1, 2, 4mm. The relative decrease of pressure rising performance of the fan is 15 percent for the design flow rate when the gap size is 1 percent of the impeller diameter. The reduction of performance becomes large as the flow rate increases. The leakage flow through the clearance affects the through flow of the impeller, which results in decrease of the slip factor as well as the impeller efficiency. The data base obtained in the present study can be used for the design and flow analysis of the airfoil fans.

Application of Airfoil Impeller for Enhancement of Aerodynamic Performance of High Speed Centrifugal Fan (고속 원심홴의 공력성능 향상을 위한 에어포일 임펠러 적용)

  • Park, Kyung Hyun;Park, Chang Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.321-327
    • /
    • 2016
  • This paper presents the application of airfoil impeller for enhancement of aerodynamic performance of a high speed centrifugal fan. Three airfoil impellers are proposed, considering the maximum thickness and the location of maximum thickness of the airfoil. C4 airfoil thickness distribution is applied to the three airfoil impellers. The impellers are evaluated using CFD (computational fluid dynamics) and suction power test. From the results, it is confirmed that flow separations on the pressure side of the impeller blades and the pressure side of diffuser blades are reduced when airfoil blade is applied to the impellers. It is also confirmed that with the centrifugal fan having airfoil impellers, there is an increase in fan efficiency by approximately 3% and reduction in specific sound level by approximately 1.3 dB(A).

Performance Prediction and Flow Field Calculation for Airfoil Fan with Impeller Inlet Clearance

  • Kang, Shin-Hyoung;Cao, Renjing;Zhang, Yangjun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.226-235
    • /
    • 2000
  • The performance prediction of an airfoil fan using a commerical code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passsage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub.

  • PDF

Performance of NACA 65-810 Radial Airfoil Impellers (NACA 65-810 반경류 에어포일 임펠러의 성능특성)

  • Kang, Shin-Hyoung;Hu, Shengli
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.24-31
    • /
    • 1998
  • Aerodynamic performance tests and flow measurement were carried out for several radial impellers of NACA 65-810 airfoil. The data base obtained are to be used for verifying the methods of flow analysis and CFD codes. The effects of numbers and span of blades on the performances, efficiency and impeller exit flow are investigated in the present study. The flow rate on the performance curve is proportional to the span of the blade for the same value of fan pressure rise. The magnitude of radial velocity component at the impeller exit gradually decreases from the hub to shroud side. The magnitude of tangential velocity component gradually increases from the hub to shroud side. The way of variations of velocity is the same at the diffuser exit, however, becomes more uniform. The pressure rise performance increases with blade number at the small flow coefficients, however, decreases with the number of blade at the large flow coefficients. This shows that flow guidance in important at the low flow rate and the friction becomes significant at the high flow rate.

  • PDF

The Evaluation of Performance and Flow Characteristics on the Diffuser Geometries Variations of the Centrifugal Compressor in a Marine Engine Turbocharger (박용 터보차져의 원심압축기의 디퓨져 형상변경에 따른 성능비교 및 유동특성 평가 연구)

  • Kim, Hong-Won;Ha, Ji-Soo;Kim, Bong-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30-50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on NACA airfoil and second is channel diffuser and third is conformal transformation of NACA65(4A10)06 airfoil. Mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. NACA65(4A10)06 airfoil showed the widest operating range and higher pressure characteristics than the others.

A Control of the High Speed BLDC Motor with Airfoil Bearing (Airfoil Bearing 이 장착된 초고속 BLDC 모터 제어)

  • Jeong, Yeon-Keun;Kim, Han-Sol;Baek, Kwang Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.925-931
    • /
    • 2016
  • The BLDC motor is used widely in industry due to its controllability and freedom from maintenance because there is no mechanical brush in the BLDC motor. Furthermore, it is suitable for high-speed applications, such as compressors and air blowers. For instance, for a compressor with a small impeller due to miniaturizing, the BLDC motor has to rotate at a very high speed to maintain the compression ratio of the compressor. Typically, to reach an ultra-high speed, airfoil bearings must be used in place of ball bearings because of their friction. Unfortunately, the characteristics of airfoil bearings change drastically depending on the revolution speed. In this paper, a BLDC motor with airfoil bearings is controlled with a PID controller. To analyze and determine the PID coefficients, the relay-feedback method is used. Additionally, for adaptive control, a fuzzy logic controller is used. Furthermore, the auto-tuning and self-tuning techniques are combined to control the BLDC motor. The proposed method is able to control the airfoil-bearing BLDC motor efficiently.

Performance Test and Aerodynamic Design on the High Pressure Ratio Centrifugal Compressor of a Turbocharger (과급기의 고압력비 원심압축기 공력설계 및 시험평가)

  • Kim, Hong-Won;Ryu, Seung-Hyup;Lee, Geun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.13-20
    • /
    • 2014
  • It is necessary to design a compressor with high pressure ratio that satisfies the IMO(international maritime organization) NOx emission regulation for the marine diesel engine. Impeller was designed using the modified slip factor with the flow coefficient. The main purpose of this study is to investigate the sensitivity of the compressor performance by the vaned diffuser geometries. The first vaned diffuser type was based on a NACA airfoil, the second was channel diffuser, and the third was conformally transformated configuration of a NACA65(4A10)06 airfoil. The sensitivity of the performance was calculated using a commercial CFD program for three different diffuser geometries. The channel diffuser showed the wide range of operation and higher pressure characteristics, comparing with the others. This is attributed to the flow stability at diffuser. Combined with this results with impeller design, the optimized compressor was designed and verified by the test results.

Design Method of the Sirocco Fan Considering Aeroacoustic Performance Characteristics (공력음향학적 특성을 고려한 시로코 팬의 설계 방법)

  • Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.59-64
    • /
    • 2010
  • A design method of Sirocco fan is developed for constructing 3-D impeller and scroll geometries, and for predicting both the aerodynamic performance and the noise characteristics of the designed fan. The aerodynamic blading design of fan is conducted by blade angle, camber line determinations and airfoil thickness distribution, and then the scroll geometry of fan is designed by using logarithmic spiral. The aerodynamic performance of designed fan is predicted by the meanline analysis with flow blockage, slip and pressure loss correlations. Based on the predicted performance data, fan noise is predicted by two models for cutoff frequency and broadband noise sources. The present predictions for the performance and the noise level of actual fans are well agreed with measurement results.

A Study on the Development of a 4,000CMM Grade Blower for a Ventilation System (환기시스템용 4000CMM급 송풍기 개발에 관한 연구)

  • Lee, Cheon-Suk;Lee, Won-Uk;Jang, Sung-Cheol;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • This study is about the development and revision of a blower design for a ventilation system. In this study, to describe the flow in the 4000CMM grade blower, 3-dimensional steady-state turbulence was assumed to govern the flow equation. The flow field with velocity distribution according to the elbow duct of the ventilation system is also compared. Finally, vibration was observed in the blower at the installation to ventilation system. The cause was due to a problem in the manufacturing process of the airfoil type impeller.

Performance test for the compressor of 100kW APU (100kW급 보조동력장치용 압축기 성능시험)

  • Lim, Byeung-Jun;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Kyoung-Jin;Baik, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.655-660
    • /
    • 2001
  • The performance test of a centrifugal compressor for APU(Auxiliary Power Unit) which is developed by the collaborative research of KARI and Samsung TechWin has been conducted. The investigated compressor consists of a curved inlet, a centrifugal impeller, a channel diffuser and a plenum chamber. The experiments were carried out in an open-loop centrifugal compressor test rig driven by a turbine. For three different diffusers, overall performance data were obtained at 80%, 90% and 97% of design speed. For the initially designed wedge-type diffuser, test results showed that the compressor was operated at a higher mass flow rate than the design requirement. By reducing the diffuser throat area, the compressor operating range was shifted to lower mass flow rate range. The test result of redesigned wedge-type diffuser showed high pressure loss. To reduce the diffuser loss, diffuser inlet radius was increased and airfoil-type of diffuser was adopted. This airfoil-type diffuser showed reasonal results in terms of design requirement.

  • PDF