• Title/Summary/Keyword: Airfoil Flow

검색결과 407건 처리시간 0.028초

NACA0012 천이 유동의 저속 공력 특성 해석 (LOW-SPEED AERODYNAMIC CHARACTERISTIC OF TRANSITION FLOW OVER THE NACA0012)

  • 전상언;박수형;김상호;변영환;정경진;강인모
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.1-8
    • /
    • 2010
  • Laminar separation bubble and transitional flow over the NACA0012 are investigated at a moderate range of Reynolds numbers. A Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for the NACA0012 airfoil. Results of transition onset point and the length are compared well with experimental data and Xfoil prediction. The present RANS results show at high angles of attack better agreement with experimental data than Xfoil results using the boundary layer equations.

Computation of serrated trailing edge flow and noise using a hybrid zonal RANS-LES

  • 김태형;이승훈;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.414-419
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

  • PDF

혼합 영역 RANS-LES를 이용한 톱니 뒷전 유동 및 소음장의 계산 (Computation of Serrated Trailing Edge Flow and Noise Using a Hybrid Zonal RANS-LES)

  • 김태형;이승훈;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.444-450
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

다양한 근사인수분해 알고리즘을 이용하여 압축성 유동장의 수렴성 및 유용성에 대한 연구 (A Numerical Study on Efficiency and Convergence for Various Implicit Approximate Factorization Algorithms in Compressible Flow Field.)

  • 권창오;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.17-22
    • /
    • 1999
  • Convergence characteristics and efficiency of three implicit approximate factorization schemes(ADI, DDADI and MAF) are examined using 2-Dimensional compressible upwind Navier-Stokes code. Second-order CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method with Fromm scheme is used for the right-hand side residual evaluation, while generally first-order upwind differencing is used for the implicit operator on the left-hand side. Convergence studies are performed using an example of the flow past a NACA0012 airfoil at steady transonic flow condition, i. e. Mach number 0.8 at $1.25^{\circ}$ angle of attack. The results were compared with other computational results in order to validate the current numerical analysis. The results from the implicit AF algorithms were compared well in low surface with the other computational results; however, not well in upper surface. It might be due to lack of the grid around the shock position. Because the algorithm minimizes the errors of the approximate decomposition, the improved convergence rate with MAF were observed.

  • PDF

환기시스템용 4000CMM급 송풍기 개발에 관한 연구 (A Study on the Development of a 4,000CMM Grade Blower for a Ventilation System)

  • 이천석;이원욱;장성철;이중섭
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.17-23
    • /
    • 2017
  • This study is about the development and revision of a blower design for a ventilation system. In this study, to describe the flow in the 4000CMM grade blower, 3-dimensional steady-state turbulence was assumed to govern the flow equation. The flow field with velocity distribution according to the elbow duct of the ventilation system is also compared. Finally, vibration was observed in the blower at the installation to ventilation system. The cause was due to a problem in the manufacturing process of the airfoil type impeller.

Horn-type Rudder 주위의 2 차원 난류유동 해석 (Analysis of Two-Dimensional Turbulent Flow around the Horn-type Rudder)

  • 정남균
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.924-931
    • /
    • 2009
  • The two-dimensional turbulent flow around the horn-type rudder has been examined in the present study by using the commercial code FLUENT. The standard ${\kappa}-{\epsilon}$ model is used as a closure relationship. The geometry of horn rudder is based on the NACA 0020 airfoil. The simulations for various angle attack (${\alpha}$) and yaw angle(${\delta}$) are carried out. The effect of Reynolds number is also investigated in this study. The cavitation is more possible when the yaw angle is $6^{\circ}$ and it is more serious as Reynolds number increases.

Single and High-Lift Airfoil Design Optimization Using Aerodynamic Sensitivity Analysis

  • Kim, Chang Sung;Lee, Byoungjoon;Kim, Chongam;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.20-27
    • /
    • 2001
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. The capability of the present sensitivity codes to treat complex geometry is successfully demonstrated by analyzing the flows over multi-element airfoils on Chimera overlaid grid systems.

  • PDF

초소형 비행체 주위의 저 레이놀즈수 영역에 대한 수치 해석 및 실험적 연구 (Numerical Analysis and Experimental Study for Low Reynolds number region around Micro Air Vehicle)

  • 김영훈;김우례;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.53-58
    • /
    • 2002
  • A three-dimensional incompressible Navier-Stokes solver is developed for the flow analysis around Micro Air Vehicle(MAV) designed by MACDL(Micro Aerodynamic Control and Design Lab), Seoul National Univ., Validations of this solver are presented for two cases, first flow over the circular cylinder with infinite length, second flow over infinite wing with wing section, E387 airfoil. Simultaneously, Wind Tunnel test is performed with Flatform Wire type sir-component balance and model designed by MACDL. The numerical results are also examined through comparison with experimental data.

  • PDF

날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상 (Improvement of the Flow Characteristics by Optimizing the Leading-Edge Shape Around Airfoil/Flat-Plate Junction)

  • 조종재;김귀순
    • 한국추진공학회지
    • /
    • 제13권6호
    • /
    • pp.24-33
    • /
    • 2009
  • 본 논문에서는 2차유동손실을 일으키는 주요 요인 중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전의 형상을 결정하는 변수를 정하고 이를 최적화 하였다. 근사최적화 기법을 이용 최적화를 수행하였다. 유동해석과 최적화 프로그램으로는 $FLUENT^{TM}$$iSIGHT^{TM}$를 이용하였다. 최적화 수행결과, 기준 모델의 경우에 비해 최적화된 모델의 경우 전압력 계수가 약 9.79% 감소하였다.

대리모델을 사용한 축류송풍기 블레이드의 형상 최적화 (Shape Optimization of Axial Flow Fan Blade Using Surrogate Model)

  • 김진혁;최재호;김광응
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2440-2443
    • /
    • 2008
  • This paper presents a three dimensional shape optimization procedure for a low-speed axial flow fan blade with a weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations. Six variables from airfoil profile and lean are selected as design variables. 3D RANS solver is used to evaluate the objective functions of total pressure efficiency. Surrogate approximation models for optimization have been employed to find the optimal design of fan blade. A search algorithm is used to find the optimal design in the design space from the constructed surrogate models for the objective function. The total pressure efficiency is increased by 0.31% with the weighted average surrogate model.

  • PDF