• Title/Summary/Keyword: Airfoil Flow

Search Result 406, Processing Time 0.024 seconds

A Numerical Analysis of Rarefied Flow of Cylinder Using FDDO (FDDO를 이용한 실린더를 지나는 희박기체의 해석)

  • Ahn M. Y.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.138-144
    • /
    • 1998
  • The BGK equation, which is the kinetic model equation of Boltzmann equation, is solved using FDDO(finite difference with the discrete-ordinate method) to compute the rarefied flow of monatomic gas. Using reduced velocity distribution and discrete ordinate method, the scalar equation is transformed into a system of hyperbolic equations. High resolution ENO(Essentially Non-Oscillatory) scheme based on Harten-Yee's MFA(Modified Flux Approach) method with Strang-type explicit time integration is applied to solve the system equations. The calculated results are well compared with the experimental density field of NACA0012 airfoil, validating the developed computer code. Next. the computed results of circular cylinder flow for various Knudsen numbers are compared with the DSMC(Direct Simulation Monte Carlo) results by Vogenitz et al. The present scheme is found to be useful and efficient far the analysis of two-dimensional rarefied gas flows, especially in the transitional flow regime, when compared with the DSMC method.

  • PDF

Aerodynamic Design of the Axial Fan (축류 송풍기의 공력학적 설계)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae;Nam, Hyung-Baik;Yoon, In-Kyu;Nam, Leem-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.22-28
    • /
    • 1999
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid flow theory of Martensen method, which was also applied to select an airfoil for required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

Computational Study of Unsteady Three Dimensional Wing in Pitching Motion Utilizing Linear Vortex Panel Method (VORTEX 패널법을 이용한 비정상 3차원 날개의 피칭 운동에 관한 연구)

  • Jeong,Bong-Gu;Cho,Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, steady/unsteady aerodynamic characteristic for three dimensional symmetric wing was investigated numerically using Vortex Panel Method. This program utilized linearly varying vortices in x and y directions distributed on the wing surface and was applied to the incompressible potential. flow around a three dimensional wing Separation and deformation of the wake are not considered. The comparison between NACA Airfoil Data and the computed results showed excellent agreement. πus method was applied to unsteady wings undergoing both sudden pitch-up and constant rate pitching motion. In the unsteady flow analysis, a formation and a time-dependent locations of Starting Vortices are considered and the effect of Starting Vortices on aerodynamic characteristic of the wing was calculated. The present method can be extended to apply for more complicated cases such as pitching, flapping and rotating wing analysis.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Experimental and Computational Study on Separation Control Performance of Synthetic Jets with Circular Exit

  • Kim, Minhee;Lee, Byunghyun;Lee, Junhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.296-314
    • /
    • 2016
  • This paper presents experimental and computational investigations of synthetic jets with a circular exit for improving flow control performance. First, the flow feature and vortex structure of a multiple serial circular exit were numerically analyzed from the view point of flow control effect under a cross flow condition. In order to improve separation control performance, experimental and numerical studies were conducted according to several key parameters, such as hole diameter, hole gap, the number of hole, jet array, and phase difference. Experiments were carried out in a quiescent condition and a forced separated flow condition using piezoelectrically driven synthetic jets. Jet characteristics were compared by measuring velocity profiles and pressure distributions. The interaction of synthetic jets with a freestream was examined by analyzing vortical structure characteristics. For separation control performance, separated flow over an airfoil at high angles of attack was employed and the flow control performance of the proposed synthetic jet was verified by measuring aerodynamic coefficient. The circular exit with a suitable hole parameter provides stable and persistent jet vortices that do beneficially affect separation control. This demonstrates the flow control performance of circular exit array could be remarkably improved by applying a set of suitable hole parameters.

Development of high performance and low noise axial-flow fan for cooling machine room of refrigerator using airfoil-cascade analysis and surface ridge shape (익렬 분석 및 표면 돌기 형상을 이용한 냉장고 기계실 냉각용 고성능/저소음 축류팬 개발)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2020
  • This study aims to improve the flow and noise performances of an axial-flow fan for cooling the machine room in a refrigerator by using airfoil-cascade analysis and surface ridge shape. First, the experimental evaluations using a fan performance tester and an anechoic chamber are performed to analyze the flow and noise performances of the existing fan system. Then, the corresponding flow and noise performances are numerically assessed using the Computational Fluid Dynamics (CFD) techniques and the Ffowcs-Williams and Hawkings (FW-H) equation, and the validity of numerical results are confirmed through their comparisons with the experimental results. The analysis for the flow of a cascade of airfoils constructed from the existing fan blades is performed, and the pitch angles for the maximum lift-to-drag ratio are determined. The improved flow performance of the new fan applied with the optimum pitch angles is confirmed. Then, the fan blades with surface ridges on their pressure sides are devised, and the reduction of aerodynamic noise of the ridged fan is numerically confirmed. Finally, the prototype of the final fan model is manufactured, and improvements in the flow and noise performances of the prototype are experimentally confirmed.

A Study on Flow Characteristics of a Wells Turbine for Wave Power Conversion Using Numerical Analysis (수치해석을 이용한 파력발전용 웰즈터빈의 유동특성에 관한 연구)

  • ;;;;T.Setoguchi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.182-190
    • /
    • 2001
  • The aerodynamics of the Wells turbine has been studied using 3-d, unstructured mesh flow solver for the Reynolds-averaged Navier-Stokes equations. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define 3-D numerical grid is based upon that of an experimental test rig. The 3-D Wells turbine model, consisting of approximate 220,000 cells is tested of four axial flow rates. In the calculations the angle of attack has been varied between 10˚ and 30˚ of blades, Representative results from each case are presented graphically andy analysed. It is concluded that this technique holds much promise for future development of Wells turbines.

  • PDF

An Experimental study on the Broadband Noise Generation in Axial Flow Fan (축류팬에서의 광대역소음 발생에 대한 실험적 연구)

  • Rhee, Wook;Choi, Jong-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.91-96
    • /
    • 1998
  • The broadband noise generated aerodynamically from a two-bladed axial flow fan has been measured and compared to the result of a self-noise prediction method. The prediction scheme is based on the experimental data set acquired from a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections. For low blade loading case the comparison showed a reasonably good agreement, but as the loading becomes larger the empirical formula overpredict the sound pressure level at high frequency range. This is probably due to the use of stationary wing data for the prediction of rotating blade case, which will be quite different in their vortex strength at the blade tip.

  • PDF

Aerodynamic Design of the Axial Fan (축류 송퐁기의 공력학적 설계)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae;Nam, Hyung-Baik;Yoon, In-Kyu;Nam, Leem-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.64-69
    • /
    • 1998
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid theory of Martensen method, which was also applied to select an airfoil of required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

Improvement of the Flow Around Airfoil/Flat-Plate Junctures by Optimization of the Leading-Edge Shape (날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.257-265
    • /
    • 2009
  • The present study deals with the leading edge shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge is optimized with design variables form the leading-edge shape. Approximate optimization design method is used for the optimization. The study is investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. As the result, total pressure coefficient of the optimized design case was decreased about 9.79% compare to the baseline case.

  • PDF