• Title/Summary/Keyword: Airfield Pavement

Search Result 15, Processing Time 0.024 seconds

Development of Deduct Value Curves for the Pavement Condition Index of Asphalt Airfield Pavement (아스팔트 공항포장의 PCI 산출을 위한 공제값 곡선 개발)

  • Lee, Kang-Jin;Seo, Young-Chan;Cho, Nam-Hyun;Park, Dae-Wook
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • PURPOSES: This study is to develop the deduct value curves for the calculation of pavement condition index of asphalt airfield pavement. METHODS: To develop the deduct value curves of asphalt airfield pavement, panel rating was conducted to decide the pavement condition based on pavement distress type, severity, and density. RESULTS: Results show that standard deviation of deduct values by panel rating is increased at higher severity level and as damage density increases. The deduct value of alligator cracking show the highest. CONCLUSIONS: The deduct value curves based on panel rating could be used without existing problems which were occurred in Shahin's method.

Improvement of Airfield Concrete Pavement Evaluation Method (공항 콘크리트 포장 평가방법 개선 연구)

  • Eom, Byung-Sik;Park, Kyung-Bu;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.2 no.3
    • /
    • pp.155-165
    • /
    • 2000
  • Periodical evaluations of the airfield pavement are necessary to provide the ability for the existing pavement to support the increasing volume of air traffic. Also, the evaluation of the existing Pavement condition is necessary for the decision of the maintenance strategy. For this reason, airport pavements in Korea have been evaluated every five years currently. It was known, however, that the current pavement evaluation methodology was not logical and practical. The purpose of this study is to compare the current pavement evaluation method with design chart to the mechanistic approach used in other advanced countries. As a result of this study the mechanistic approach is found to be more logical than the current method.

  • PDF

Development of Fatigue Model for Airfield Concrete Pavement (공항 콘크리트 포장의 피로모형 개발 연구)

  • Kwon, Soo-Ahn;Yang, Hong-Seok;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.27-35
    • /
    • 2004
  • There are two methods in estimating the remaining life of in-service airfield concrete pavement. They are a method simply using the past accumulated traffic and a method using the theoretical mechanistic analysis. Since the former method is somewhat far from the actual condition, the latter method is widely used by most engineers and researchers. The most essential component of the latter method is the fatigue model of the concrete slab. A fatigue model for airfield concrete pavement is developed in this study by a series of fatigue tests using 30 concrete cylinder specimens obtained from a 10 year old in-service airfield concrete slab. Strengths for the stress ratio calculation were obtained from the split tensile test of the cores sliced. Fatigue test mode was repeated split tensile test. The R2 of developed fatigue model was 0.5. Specimens taken from another airport had been tested for validation of the model. The results showed a good fit to the model. It was also found that the fatigue life predicted from the model was a tittle greater when the stress ratio is greater than 80 percent than other fatigue models developed earlier in America.

  • PDF

Development of a Procedure for Remaining Life Estimation in Airfield Concrete Pavement (공항 콘크리트 포장의 잔존수명 산출 논리 개선 연구)

  • Kwon Soo-Ahn;Suh Young-Chan;Cho Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.131-138
    • /
    • 2006
  • Methods of back calculation for either design procedures or elastic moduli obtained from FWD(Falling Weight Deflectometer) tests have widely been used to predict remaining life of airfield concrete pavements. Since the variation of the elastic modulus obtained from the FWD test depends on the back calculation methods, prediction of remaining life of airfield pavement using the back calculation method has not been reliable. In addition, the FWD method only concentrates on the structural integrity of the pavement without considering functional distress. In this study, a newly developed remaining life estimation procedure is proposed. This methodology includes both structural and functional consideration and suggests models and decision criteria for each stage. In order to improve the estimation procedure on remaining life of pavement, conducted the several tests on an old airfield concrete pavement. As a result, it is concluded that the load transfer efficiency on joint is better for predicting remaining life of pavement than the elastic modulus, which is commonly used. In order to verify applicability of the newly developed estimation procedure and detailed models, investigation and analysis were conducted according to the new methodology on C-airfield pavement. Finally, it is confirmed that the efficiency of the proposed method for practical application was good enough.

  • PDF

A Sustainable Concrete for Airfield Rigid Pavements (공항 활주로 포장용 친환경 콘크리트의 활용 방법)

  • Salas-Montoya, Andres;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.23-24
    • /
    • 2021
  • The use of recycled concrete aggregates (RCA) as a substitute for natural aggregates in new concrete produces both economic and environmental advantages. Most of the RCA applications for pavements have been primarily applied to support layers for roads and airfields. This paper summarizes a work completed at the University of Illinois in partnership with the O'Hare Modernization Program to examine the effect of coarse and fine RCA on the concrete's fresh and hardened properties for airfield rigid pavement applications. Ten different RCA concrete mixtures were prepared with the incorporation of different percentages of RCA fines as well as replacement of cement with high volume percentages of supplementary cementitious materials such as Class C fly ash and ground granulated blast furnace slag to improve the workability and long-term properties of RCA concrete. All the mixes on this stage included 100% recycled coarse aggregates and the Two-Stage Mixing Approach was used as a mixing procedure. Based on the results obtained in the research, mixes with high percentages of recycled fine and coarse aggregates could be used for construction of airfield concrete pavements in conjunction with supplementary cementitious materials

  • PDF

The Study On Customization for Domestic Application of Micro PAVER (Micro PAVER의 국내 적용을 위한 적정화에 대한 연구)

  • An, Deok-Soon;Kwon, Soo-Ahn;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.21-29
    • /
    • 2003
  • The management of existing airfield pavement information has currently become difficult and the maintenance cost has increased over time due to the long-term performance. It is needed to develop the method for effective budget allocation and systematic airfield pavement management services. The objectives of this paper are to introduce Micro PAVER, one of the popular pavement management systems, into our management system and customize Micro PAVER based on our environment and pavement management level. This study focused on the analysis on logics and structures of Micro PAVER and customization of important parts in the program using the existing pavement evaluation data and survey method. Customized items selected in this study included the pavement deterioration prediction models, critical PCI, maintenance cost by PCI, maintenance or rehabilitation method and unit cost, and PCI rank.

  • PDF

Development of Falling Weight Deflectometer for Evaluation of Layer Properties of Flexible Pavement (도로포장 구조체의 물성 추정을 위한 FWD의 설계 및 제작)

  • 황성호;손웅희;최경락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 2003
  • Many structural evaluation procedures of road and airfield pavements use the Falling Weight Deflectometer (FWD) as a critical element of non-destructive deflection testing. FWD is a trailer mounted device that provides accurate data on pavement response to dynamic wheel loads. A dynamic load is generated by dropping a mass from a variable height onto a loading plate. The magnitude of the load and the pavement deflection are measured by a load celt and geophones. And database concerning pavement damage should be enhanced to analyze loss of thickness asphalt layer caused from the plastic deformation of pavement structure, such as cracking or rutting. The prototype FWD is developed, which consists of chassis system, hydraulic loading system, data acquisition and analysis system. This system subsequently merged to from automation management system and is then validated and updated to produce a working FWD which can actually be used in the field.

The Effects of Slab Size on Pavement Life Cycle Cost

  • Parsons, Timothy A.;Hall, Jim W.Jr
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.49-54
    • /
    • 2006
  • The purpose of this study was to determine the effect of expansion joint spacing (slab size) on the life cycle costs of owning Portland Cement Concrete (PCC) airfield pavements. Previous research has shown that slab size has a statistically significant impact on pavement performance. A probabilistic life cycle cost analysis was performed to determine if the effect of slab size on pavement performance would affect the total cost of ownership of PCC pavements. Data from 48 Pavement Condition Index (PCI) inspections of military and civilian airfields were used to develop probability-of-distress-by-condition curves, which were then used to develop probabilistic cost-of-repair-by-condition curves. A present worth life cycle cost analysis was then performed for various slab sizes, using construction costs, rehabilitation costs, and maintenance costs. Maintenance costs were determined by assuming a condition deterioration rate appropriate for each slab size and applying the cost-by-condition curves. The probabilistic cost-of-repair-by-condition curves indicated that smaller slabs are more expensive to repair on a unit cost basis. Life cycle cost analysis showed that larger slabs have a higher total cost of ownership than smaller slabs due to a faster rate of deterioration.

  • PDF