• 제목/요약/키워드: Aircraft material

Search Result 386, Processing Time 0.027 seconds

Research on Aircraft Lightning Protection Design and Certification of Fuel System in Composite Material (복합재항공기 연료시스템의 낙뢰보호설계 및 인증 연구)

  • Lee, Young-jae;Cho, Wonil;Jeon, Jeonghwan;Koh, Jinhwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.130-140
    • /
    • 2017
  • Lightning protective design of an aircraft fuel system is closely related to the safety of the flight. Recently, composite material in building an aircraft becomes more important because it can reduce the weight of the aircraft. The composite materials decrease the protection against the effect of lightning. Lightning protective design of metal material aircraft has been researched for a long time and the design technique has been announced widely. However, research on the lightning protective design using composite material aircraft is very limited. In this study, lightning protective design for fuel tank structural component, access cover, fuel filler cap and drain valve in carbon fiber composite material aircraft have been presented. To show the compliance with FAA airworthiness standard regarding the presented protection designs, three steps, including lightning strike analysis, lightning environment analysis and certification test, were conducted in accordance with FAA AC 20-53.

A Study on the Pilot Qualification and Qualification System Establishment of The Aerospace Composite Materials

  • Yong Man Yang;Sung In Cho;Seok Ho Jeong;Je-Jun Kim;Manseok Oh;Young Hwan Kim
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.14-24
    • /
    • 2023
  • The materials applied to the aircraft fuselage, parts, and components must be verified by relative authorities in accordance with the procedures set by the airworthiness authority to achieve the aircraft type certification. There are no examples of domestic composite materials which were verified in order to be applied to aircraft structure. In this study, the composite material certification system of NCAMP, an American composite material standard certification organization, was reviewed and used as the fundamentals of the first aerospace composite material certification system in ROK(Fig 2,8). Also updated material certification documents were developed and confirmed by material certification engineers and inspectors. This aerospace composite material qualification system is intended to modernize the material certification system for AAM(Advanced Air Mobility) as well as aircraft and to enhance the understanding of related technicians and inspectors.

Development of the Aircraft Materials Selector Expert System

  • Lim, Kang-Hee;Guan, Zhi-Dong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.302-305
    • /
    • 2005
  • To comply to demand for a development requirement of aircraft design part, the expert system builds up standard knowledge-base based on presently maintained expert knowledge and experience in aircraft structure material selection. It also builds up database based on aircraft design open data, and standard calculation module used for present design and analysis method. This system is developed using Visual Basic language. The expert system standardize aircraft structure material selection and can be applied to all type of elementary stage of aircraft structure design. It is working on Windows, which has a friendly interface and is convenient for debugging, maintenance and transplanting. Explanation of the structure and the function of the system was given in this paper.

  • PDF

A Investigation the Aircraft Pilots Licence Acquisition Standard Reference Material Providing (항공기조종사 자격증명취득 표준교재 제공에 관한 고찰)

  • Park, Wontae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.580-587
    • /
    • 2016
  • In the purpose of suggesting the necessity and proper method of providing the standard reference material for acquiring the aircraft pilot license, this study provides the FAA and ROKAF case study, and positively analyzes the materials of 178 pilots and student pilots who acquired the aircraft pilot license. The result of case study shows that compared to the case of Korea which the restriction on the standard reference material providing exists, the FAA(Federal Aviation Administration) and ROKAF are currently providing the standard reference material. Additionally, the result of positive analysis indicates the fact that the necessity of standard reference material providing is well recognized and its importance also found to be remarkably high. These results represent that the standard reference material providing is necessary for training competent aircraft pilots. Also, this will mitigate the current shortage of aircraft pilots due to the rapid growth of air transportation industry, and this will play an important role in preventing diverse aircraft-related accidents.

A Study on the Certification Method for the Application of Composite Material of eVTOL Aircraft (전기동력 수직이착륙 항공기의 복합재료 적용을 위한 소재인증 방안 고찰)

  • Bae, Sung-Hwan;Cho, Sung-In;Choi, Cheong-Ho;Jeon, Seungmok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.969-976
    • /
    • 2020
  • Urban Air Mobility is attracting attention as a future innovation industry around the world, and leading industries are considering the application of composite materials for structural robustness and lightening in the designing and manufacturing new concept eVTOL aircraft. To apply composite materials to the new concept of eVTO aircraft, this paper was analyzed about composite material qualification system of FAA & EASA and institutionalized by Korea Government, including the procedures and methods, the organization to carry out the material verification for domestic conditions. The domestic composite material qualification system will not only make it easier for manufacturers of eVTOL aircraft with a new concept to apply composite materials to domestic aircraft through pre-material qualification, but also reduce the burden of material qualification within the period of type certification. In addition, domestic manufacturers of composite materials with qualified material quality and performance will be easy to enter for domestic aircraft applications and composite material manufacturers with experience in applying to aircraft will have a positive impact on overseas exports. This system will be able to promote the development eVTOL aircraft industry of a new concept and enhance international credibility of made aircraft in Korea.

Computational Investigation of Lightning Strike Effects on Aircraft Components

  • Ranjith, Ravichandran;Myong, Rho Shin;Lee, Sangwook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.44-53
    • /
    • 2014
  • A lightning strike to the aircraft seriously affects the aircraft and its components in various ways. As one of the most critical threats to the flight safety of an aircraft, fuel vapour ignition by lightning can occur through various means, notably through hot spot formation on the fuel tank skins. In this study, a coupled thermal-electrical approach using the commercial software ABAQUS is used to study the effects of a lightning strike on aircraft fuel tanks. This approach assumes that the electrical conductivity of a material depends on temperature, and that a temperature rise in a material due to Joule heat generation depends on electrical current. The inter-dependence of thermal and electrical properties-the thermal-electrical coupling-is analyzed by a coupled thermal-electrical analysis module. The analysis elucidates the effects of different material properties and thicknesses of tank skins and identifies the worst case of lightning zones.

Qualification of Composite Materials for Small Aircraft (소형 항공기용 복합재료 인증)

  • Suh, Jang-Won;Park, Jong-Hyuk;Lee, Jong-Hee
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.17-23
    • /
    • 2011
  • Since the time, cost and lack of regulatory information and guidance, one of the largest regulatory obstacles for an airframe manufacturer of polymer based advanced composite materials in certified aircraft applications, is to generate design allowables that will satisfy Airworthiness Regulations. In the past two decades, the design allowables used in military aircraft had been generated and applied in Korea, however the qualification of composite materials used in certifying airframe structure was not accomplished for design and demonstration of compliance to applicable airworthiness regulation. It is the intend of this paper that provide the basis of composite material qualification for small aircraft certification to the airworthiness regulation.

HPA(Human Powered Aircraft) Material Selection and Structural Design (인력비행기의 소재선정 및 구조설계)

  • Yun, Sungchan;Hu, Hyenoo;You, Saerom;Lee, Jaehong;Kim, Dooman;Oh, Janggeun;Lee, Heewoo
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • The 1st development of "Human Powered Aircraft(HPA)" in Korea has been conducting by KAFA(Korea Air Force Academy) from Aug. 2008 to now. HPA is an aircraft powered by directly human energy. The thrust provided by the human power may be the only source and that is weak. Therefore, light weight and strong structure is first requirement. In this paper, treating a basic conceptual design of HPA and material property and material choice for HPA. Also analysing the structure and checking the safety of HPA.

  • PDF

Development of Structural CFRP according to BMS Certification Standard (BMS 인증기준에 따른 구조용 CFRP 개발)

  • Kang, Byong-Yun;Son, Chang-Suk;Moon, Chang-Kwon;Nam, Ki-Woo;Kim, Yoon-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.92-97
    • /
    • 2009
  • In order to export aircraft components or substructures, it is necessary to get a certification from the main company for the components or an airworthiness certification from the FAA. In Korea, those processes are performed by a small number of private companies for aircraft components. However, airworthiness certification has never been done in the company. To export an assembled aircraft, whether small or large, it is obligatory to get a certification for the aircraft being exported. Currently, the Korean government is trying to get BASA agreement in a few years. For a mid-size company, it is easier to get the NADCAP audit process for the supply of aircraft components to the main company. In this paper, the overall process of aircraft certification is discussed and airworthiness certification is treated for export aircraft. Moreover, the NADCAP audit process is described in detail by introducing example parts made of composite material. This detailed process would be very helpful to a small or mid-size company that wants to develop and deliver aircraft components to foreign companies.

An Overview of Composite Material Qualification for Aircraft (항공기용 복합소재 인증 고찰)

  • Yong-Man Yang;Bum-Soo Yoon;Seung-Mok Jeon;Seung-Ken Lee;Un-Ryul Baek;Man-Seok Oh
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.361-368
    • /
    • 2023
  • Composite materials used in aircraft must be certified using approved materials to ensure the the airworthiness of the aircraft. Certification is carried out by verifying the physical properties and processes of the materials, and producing material and process specifications. The composite material certification system in ROK(Republic of Korea) has been established through the MOLIT(Ministry of Land, Infrastructure and Transport) pilot certification project for aircraft composite materials. Currently, the KIAST(Korea Institute of Aviation Safety Technology) operates and manages the certification and shared data system. This study identifies realm for improvement in the established certification system for aircraft composite materials based on empirical evidence and aims to propose measures for the certification and industrial promotion of domestically produced aircraft composite materials.