• Title/Summary/Keyword: Aircraft equipment

Search Result 329, Processing Time 0.022 seconds

Avionics Parts Certification Trend (항공전자 부품의 인증동향)

  • Han, Sang-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.131-139
    • /
    • 2010
  • Avionics technologies have been developed with a development of an airplane since 1903. Historically, radio communication was started in 1910's, radio navigations in 1920's and autopilot was applied first in 1930's. Glass cockpit was initiate on MD-80 in 1979 first and now spreaded widely and similar with GPS navigation. Avionics in modern aircraft has a great deal of importance in view of flight safety and maintaining comfortableness. As avionics develops, so do the certification technologies. This paper introduces update avionics certification technologies developed recently.

  • PDF

5G Wireless Communication Technology for Non-Terrestrial Network (비지상네트워크를 위한 5G 무선통신 기술)

  • Kim, J.H.;Yoon, M.Y.;You, D.H.;Lee, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.51-60
    • /
    • 2019
  • As a way to further expand and enable the 5G ecosystem, the $3^{rd}$ Generation Partnership Project (3GPP) is considering the development of a 5G new radio (NR)-based non-terrestrial network (NTN). These NTNs are expected to provide ubiquitous 5G services to user's equipment (especially, in Internet of Things/machine-type communications (IoT/MTC) public safety, and critical communications) by extending service coverage to areas not covered by 5G terrestrial networks. To this end, this NTN is developing scenarios to provide 5G services using spaceborne vehicles, such as geosynchronous and low-Earth orbit satellites, and airborne vehicles, such as unmanned aircraft systems, including high-altitude pseudo-satellites. In addition, various technologies are being studied to satisfy new requirements not considered in 5G NR, such as long propagation delay time, large cell coverage, large Doppler effect, and base station movement. In this paper, we present the scenarios, requirements, technical issues and solutions, and standardization planning for NR-based NTN in 3GPP.

Effect of temperature and blank holder force on non-isothermal stamp forming of a self-reinforced composite

  • Kalyanasundaram, Shankar;Venkatesan, Sudharshan
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2016
  • Composite materials are rapidly gaining popularity as an alternative to metals for structural and load bearing applications in the aerospace, automotive, alternate energy and consumer industries. With the advent of thermoplastic composites and advances in recycling technologies, fully recyclable composites are gaining ground over traditional thermoset composites. Stamp forming as an alternative processing technique for sheet products has proven to be effective in allowing the fast manufacturing rates required for mass production of components. This study investigates the feasibility of using the stamp forming technique for the processing of thermoplastic, recyclable composite materials. The material system used in this study is a self-reinforced polypropylene composite material (Curv$^{(R)}$). The investigation includes a detailed experimental study based on strain measurements using a non-contact optical measurement system in conjunction with stamping equipment to record and measure the formability of the thermoplastic composites in real time. A Design of Experiments (DOE) methodology was adopted to elucidate the effect of process parameters that included blank holder force, pre heat temperature and feed rate on stamp forming. DOE analyses indicate that feed rate had negligible influence on the strain evolution during stamp forming and blank holder force and preheat temperature had significant effect on strain evolution during forming.

Research for Radar Signal Classification Model Using Deep Learning Technique (딥 러닝 기법을 이용한 레이더 신호 분류 모델 연구)

  • Kim, Yongjun;Yu, Kihun;Han, Jinwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.170-178
    • /
    • 2019
  • Classification of radar signals in the field of electronic warfare is a problem of discriminating threat types by analyzing enemy threat radar signals such as aircraft, radar, and missile received through electronic warfare equipment. Recent radar systems have adopted a variety of modulation schemes that are different from those used in conventional systems, and are often difficult to analyze using existing algorithms. Also, it is necessary to design a robust algorithm for the signal received in the real environment due to the environmental influence and the measurement error due to the characteristics of the hardware. In this paper, we propose a radar signal classification method which are not affected by radar signal modulation methods and noise generation by using deep learning techniques.

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

The Study on Airworthiness Certification Process on Military Airborne Safety Critical Software based on DO-178 (DO-178 기반의 군용항공기 탑재 안전필수 소프트웨어 감항인증 방안에 대한 고찰)

  • Heo, Jin Gu;Kim, Min Sung;Kim, Man Tae;Moon, Yong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2019
  • The software installed on an aircraft is directly related to its safety. Therefore, it shall comply with the standards of the airworthiness certification to ensure safety of flight. Airborne software should be developed in accordance with the DO-178 (Software Consideration in Airborne Systems and Equipment Certification) to comply with the airworthiness certification criterion. However, the military airborne software has been developed in accordance with the DAPA weapons system software development and management manual. In this paper, we completed a questionnaire survey of software experts. We also suggest a military airborne software development/certification process based on DO-178.

Shock Analysis of Mobile Power Supply Container for Radar with MIL-STD-810H (MIL-STD-810H를 적용한 레이더 전력공급용 이동식 컨테이너의 충격해석)

  • Kwon, Jaeeon;Shin, Dongwon;Hur, Jangwook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.569-576
    • /
    • 2021
  • Radar is a ground defense system that detects enemy aircraft and receives power from a mobile power supply in an emergency. Serious problems may occur if the equipment is damaged by impact during transportation for use. The US military standard MIL-STD-810H contains information on environmental tests such as shock and vibration applied to munitions. Therefore, in this study, the transient analysis of ANSYS 19.2 was performed using the impact data specified in MIL-STD-810H as an input value. Through this, the maximum stress generated in the impact environment of the mobile power supply container was derived, and the safety margin was calculated to confirm the reliability of the container.

Interoperability Design and Verification of Small Drone System Applying STANAG 4586 (STANAG 4586을 적용한 소형드론시스템의 상호운용성 설계 및 검증)

  • Jonghun, Lee;Taesan, Park;Kilyoung, Seong;Gyeongrae, Nam;Jungho, Moon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.74-80
    • /
    • 2022
  • The utilisation of small drones is becoming increasingly widespread particularly in the military sector. In this study, STANAG 4586, a standard interface for military unmanned aerial vehicles, was applied to a multicopter-type small drone to examine the suitability of the military system. To accomplish this, a small multi-copter vehicle was designed and manufactured, integrating a flight control computer, ground control system, and data link. Furthermore, flight control and ground control equipment software were developed by applying the STANAG 4586 interface, followed by HILS and flight tests.

Airfoil Testing to Obtain Full-range Aerodynamic Characteristics based on Velocity Field Measurements Utilizing a Digital Wind Tunnel (익형의 전 범위 받음각에서 공력특성 시험이 가능한 디지털 풍동의 개발 및 속도장 측정)

  • Kang, Sangkyun;Kim, Jin-Ok;Kim, Yong-Su;Shin, Won-Sik;Lee, Sang-Il;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.60-71
    • /
    • 2022
  • A wind tunnel provides artificial airflow around a model throughout the test section for investigating aerodynamic loads. It has various applications, which include demonstration of aerodynamic loads in the building, automobile, wind energy, and aircraft industries. However, owing to the high equipment costs and space-requirements of wind tunnels, it is challenging for numerous studies to utilize a wind tunnel. Therefore, a digital wind tunnel can be utilized as an alternative for experimental research because it occupies a significantly smaller space and is easily operable. In this study, we performed airfoil testing based on velocity field measurements utilizing a digital wind tunnel. This wind tunnel can potentially be utilized to test the full-range aerodynamic characteristics of airfoils.

A Study on Efficient Training Methods by Analyzing Differences inSpatial Disorientation Recovery according to Pilot Experience (조종사 경력별 공간정위상실(SD) 회복 차이 분석을 통한효율적인 훈련방안에 대한 연구)

  • Se-Jun Kim;Young-Jin Cho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.18-24
    • /
    • 2023
  • According to the results of a survey by Boeing, LOC-I (Loss of Control in Flight) was the highest in the number of deaths by fatality accident category in the past 10 years from 2012 to 2021, and the number of deaths worldwide due to LOC-I accidents was 757. It turned out to be the biggest cause of aircraft fatalities, with a figure close to twice the sum of UNK (Unknown or Undetermined), which is the 2nd place, and CFIT (Controlled Flight Into or Toward Terrain), which is the 3rd place. This study set six scenarios related to spatial disorientation that may occur during sensory-dependent flight targeting student pilots and instructor pilots at domestic designated specialized educational institutions using flight simulation training equipment, and in each scenario, the pilot's. The need for SDRT (Spatial Disorientation Recovery Training) is verified by analyzing the flight experience and recovery ability by qualification, and SDRT is repeatedly performed to verify and present the training cycle and time.