• 제목/요약/키워드: Aircraft Structures

검색결과 357건 처리시간 0.027초

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

Aerodynamic design optimization of an aircraft wing for drag reduction using computational fluid dynamics approach

  • Shiva, Kumar M.R;Srinath, R;Vigneshwar, K;Ravi, Kumar B
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.15-20
    • /
    • 2020
  • The aircraft industry supports aviation by building aircraft and manufacturing aircraft parts for their maintenance. Fuel economization is one of the biggest concerns in the aircraft industry. The reduction in specific fuel consumption of aircraft can be achieved by a variety of means, simplest and more effective is the one to impose minor modifications in the aircraft main wing or the parts which are exposed to the air flow. This method can lead to a reduction in aerodynamic resistance offered by the air and have a smoother flight. The main objective of this study is to propose geometric design modifications on an existing aircraft wing which acts as a vortex generator and it can reduce the drag and increase lift to drag ratio, leading to lower fuel consumption. The NACA 2412 aircraft wing is modified and designed. Rigorous flow analysis is carried out using computational fluid dynamics based software Ansys Fluent. Results show that saw tooth modification to the main wing shows the best aerodynamic efficiency as compared to other modifications.

항공기 구조 수명관리 및 취약부위 개선에 관한 연구 (A Study on the Life Management and Improvement of Vulnerable Parts of Aircraft Structures)

  • 최형준;박성제
    • 한국산학기술학회논문지
    • /
    • 제21권7호
    • /
    • pp.638-644
    • /
    • 2020
  • 본 연구는 항공기 하중에 따라 발생하는 균열을 가정하여 항공기 취약 구조의 수명을 분석하고 구조 보강 개선을 수행하였다. 항공기 구조의 선제적 수명 예측 및 수명 관리를 통해 구조 건전성 및 안전성을 확보하였다. 특히, 항공기 구조물 취약부위의 수명 분석을 통해 운용 하중의 영향이 큰 Bulkhead의 개선이 필요한 3부위를 선정하였다. 분석 대상 항공기의 균열크기 검사능력은 0.03inch 수준과 비교하여 임계균열크기는 취약 3부위 중 최하인 0.032inch이다. 상대적으로 검사능력 대비 임계균열크기가 매우 적어 항공기 안전을 위해 개선이 필요하다. 그리고 피로수명 해석 결과 항공기 요구 수명인 15000 운용시간 이상 대비 취약 3부위 중 최하인 약 1450 운용시간은 항공기 초기검사 및 재검사 시간의 반복 횟수를 증가시켜 비용 및 인력의 소요를 발생시킨다. 결국, 식별된 취약 3부위의 구조 보강을 통해 형상을 개선하였다. 발생 균열에 대한 구조 내성의 증가를 통해 최하의 임계균열크기가 0.13inch로 확보되어 항공기 안전성이 증가하였다. 항공기 운용 중 발생하는 균열에 대한 최하의 구조 피로수명은 >25000 운용시간으로서 요구 수명 이상으로 분석되어 균열 및 파단에 의해 발생하는 수리비용과 과도한 보강범위 보다 최적화된 개선을 수행하였다.

복합재료 항공기의 구조진단 기술 (Structural Health Monitoring Techniques for Composite Aircraft)

  • 최흥섭;조윤호
    • 비파괴검사학회지
    • /
    • 제30권1호
    • /
    • pp.54-59
    • /
    • 2010
  • After the advent of B787(Boeing Co.), a civil aircraft using composite materials more than 50% of it total structural weight for weight savings,best performances and efficiencies, various endeavors to develop and apply the state of art of structural health monitoring(SHM) technologies for composite aircraft have been made for many years. Despite their plentiful advantages composite aircraft structures are susceptible to the hidden or barely visible impact damages(BVID) and excessive loads that if unchecked may lead to lower structural integrity, loss of operational performance and finally a sudden catastrophic failure of the aircraft structure. In this paper background of SHM technology and relevant technologies for application of SHM technology to the composite aircraft in the near future and requirements for certification of SHM system are shortly presented.

An experimental and numerical investigation on fatigue of composite and metal aircraft structures

  • Pitta, Siddharth;Rojas, Jose I.;Roure, Francesc;Crespo, Daniel;Wahab, Magd Abdel
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.19-30
    • /
    • 2022
  • The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.

Damage assessment of structures - an US air force office of scientific research structural mechanics perspective

  • Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.135-146
    • /
    • 2010
  • This paper presents the perspective of the Structural Mechanics program of the Air Force Office of Scientific Research (AFOSR) on the damage assessment of structures for the period 2006-2009 when the author was serving as Program Manager at AFOSR. It is found that damage assessment of structures plays a very important role in assuring the safety and operational readiness of US Air Force fleet. The current fleet has many aging aircraft, which poses a considerable challenge for the operators and maintainers. The nondestructive evaluation technology is rather mature and able to detect damage with considerable reliability during the periodic maintenance inspections. The emerging structural health monitoring methodology has great potential, because it will use on-board damage detection sensors and systems, will be able to offer on-demand structural health bulletins. Considerable fundamental and applied research is still needed to enable the development, implementation, and dissemination of structural health monitoring technology.

항공기 복합재 날개구조 전단흐름 해석 (Shear Flow Analysis of Aircraft Composite Wing Structure)

  • 최익현;김성찬;김성준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.75-78
    • /
    • 2004
  • Traditionally aluminum alloy have been used in manufacturing of aircraft structures, and semi-monocoque structural concept have been mainly applied in structural design of fuselage and wing. However, recently monocoque structural concept is applied in many small-size aircraft structures manufactured with composite materials. In such case appling monocoque structural concept, in initial conceptual design stage on wing, it is not easy to analyze shear flow using classical shear flow analytical method because composite skin structure can support span-wise tension/compression stress as well as sectional shear stress. In this study, an extended shear-flow analytical method to apply to composite monocoque structural concept was developed through extending the classical shear-flow analytical method.

  • PDF

A critical comparison of reflectometry methods for location of wiring faults

  • Furse, Cynthia;Chung, You Chung;Lo, Chet;Pendayala, Praveen
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.25-46
    • /
    • 2006
  • Aging wiring in buildings, aircraft and transportation systems, consumer products, industrial machinery, etc. is among the most significant potential causes of catastrophic failure and maintenance cost in these structures. Smart wire health monitoring can therefore have a substantial impact on the overall health monitoring of the system. Reflectometry is commonly used for locating faults on wire and cables. This paper compares Time domain reflectometry (TDR), frequency domain reflectometry (FDR), mixed signal reflectometry (MSR), sequence time domain reflectometry (STDR), spread spectrum time domain reflectometry (SSTDR) and capacitance sensors in terms of their accuracy, convenience, cost, size, and ease of use. Advantages and limitations of each method are outlined and evaluated for several types of aircraft cables. The results in this paper can be extrapolated to other types of wire and cable systems.

소형 항공기용 복합재료의 기술동향에 관한 연구 (A Study on Technical Trends of Composite Materials for Small Aircraft)

  • 이종원;김진원;김필종;박일경
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.231-234
    • /
    • 2005
  • The present study provides the legislative backgrounds and contents of the America's General Aviation Revitalization Act of 1994 as well as the general impacts of the Advanced General Aviation Transport Experiments Program on the composite materials and associated general aviation aircraft structures

  • PDF

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.