• Title/Summary/Keyword: Aircraft Stability

Search Result 309, Processing Time 0.023 seconds

In-Plane Extensional Buckling Analysis of Curved Beams under Uniformly Distributed Radial Loads Using DQM (등분포하중 하에서 미분구적법(DQM)을 이용한 곡선 보의 내평면 신장 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.265-274
    • /
    • 2018
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has prompted studies directed toward the development of an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have been obtained traditionally using standard finite difference or finite element methods. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under the conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as the excessive use of storage due to the conditions of complex geometry and loading. The in-plane buckling of curved beams considering the extensibility of the arch axis was analyzed under uniformly distributed radial loads using the DQM. The critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with the precise results by other methods for cases, in which they were available. The DQM, using only a limited number of grid points, provided results that agreed very well (less than 0.3%) with the exact ones. New results according to diverse variations were obtained, showing the important roles in the buckling behavior of curved beams, and can be used in comparisons with other numerical solutions or with experimental test data.

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

The Nutritional Status by Stress on Freshmen of University (대학 신입생의 스트레스 민감 여부에 따른 영양상태)

  • Lee, Young-Hee;Rhie, Seung-Gyo;Won, Hyang-Rye
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.4
    • /
    • pp.81-95
    • /
    • 2006
  • This study was made to find out how stress affect on nutrition status of the college freshmen who were experiencing physical growth and development as well as drastic emotional change. 400 male and female freshmen in 4 year colleges were surveyed respectively through the health check-up procedure for college entrance in February, In order to find out the stress in each group frustration, deprivation, lack of self efficacy, type A behavior and anxiety response were surveyed through 10 questions with total 40 points by assigning 4 points for each question. Diet Status was expressed by DDS (Dietary Diversity Score by 5 food groups) and DVS(Dietary Variety Score). 24-hrs recall method was used to find out the quantity of daily nutrient of EAR(estimated adquacy ratio) by KDRIs(Korean Dietary Recommended Intakes). Nutrition level was analyzed by Can-Pro for professionals (Korea Nutrition Association). And for the quality intake, percentage was calculated and MAR(Mean Adequacy Ratio) were produced. Highest point was obtained in the stress of anxiety with the total 40 score of 30.20, and the scores were 29.79, 28.67, and 28.39 for deprivation, type A behavior and frustration respectively. There was no difference of blood components in accordance with stress type. Stress type was divided into less sensitive group and highly sensitive one and the relationship with the blood nutrient status was observed. The difference of blood component and blood pressure in sensitive and highly sensitive groups was observed in deprivation and anxiety. The index of blood pressure(p<0.05), hemoglobin(p<0.01), HDL-cholesterol(p<0.05), and Fe(p<0.05) was high in the deprivation of sensitive group. Blood pressure and hemoglobin was high in type A of sensitive group(p<0.05). And the contents of blood triglyceride was high in the anxiety of sensitive group(p<0.001) The result of nutrition intake analysis according to stress type showed that there was low intake for energy, riboflavin, and niacin. When the degree of deprivation was high there was a lack of riboflavin intake and there was no significant difference of nutrition intake in lack of self efficacy, type A behavior and anxiety response. Thus, it is necessary for colleges to educate the students to maintain mental stability through various programs and activities after catching a kind and extent of the stress college students we meeting with like the confusion of value system, open heterosexual relationship, and the employment difficulties linked with political uncertainty and economic recession.

  • PDF

A Study on Integraion Method for Improvement of Numerical Stability of Meshfree Method (무요소법의 수치적 안정성 개선을 위한 적분기법 연구)

  • Kang, JaeWon;Kang, Da Hoon;Cho, Jin Yeon;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • In order to generate meshes automatically for finite element analysis of complex structures such as aircraft, a large number of triangular elements are typically created. However, triangular elements are less accurate than rectangular elements, so it is difficult to obtain a reliable solution. This problem can be improved through the meshfree method using the back cell integration. However, this method also causes some problems such as over-use of the integration points and inefficiency of the integral domain. In order to improve these problems, a method of performing integration by setting the integral area based on a node basis has been proposed, but in the case of incompressible material problems, the numerical accuracy deteriorates due to the vibration phenomenon of the solution. Therefore, in this paper, the modified meshfree method is proposed which sets the integral domain as an element domain instead of the nodal domain, and the proposed method improves the numerical instability caused by the conventional meshfree method without decreasing the accuracy regardles of the shape of integral domain. The effectiveness of the modified meshfree method is verified by using 2-D examples.

Out-of-Plane Buckling Analysis of Curved Beams Considering Rotatory Inertia Using DQM (미분구적법(DQM)을 이용 회전관성을 고려한 곡선 보의 외평면 좌굴해석)

  • Kang, Ki-jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.300-309
    • /
    • 2016
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort towards developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of many investigations. Solutions to the relevant differential equations have traditionally been obtained by the standard finite difference or finite element methods. However, these techniques require a great deal of computer time for a large number of discrete nodes with conditions of complex geometry and loading. One efficient procedure for the solution of partial differential equations is the differential quadrature method (DQM). This method has been applied to many cases to overcome the difficulties of complex algorithms and high storage requirements for complex geometry and loading conditions. Out-of-plane buckling of curved beams with rotatory inertia were analyzed using DQM under uniformly distributed radial loads. Critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with exact results from other methods for available cases. The DQM used only a limited number of grid points and shows very good agreement with the exact results (less than 0.3% error). New results according to diverse variation are also suggested, which show important roles in the buckling behavior of curved beams and can be used for comparisons with other numerical solutions or experimental test data.

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

In-Plane Extensional Vibration Analysis of Asymmetric Curved Beams with Linearly Varying Cross-Section Using DQM (미분구적법(DQM)을 이용한 단면적이 선형적으로 변하는 비대칭 곡선보의 내평면 신장 진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2019
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have traditionally been obtained by the standard finite difference. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method(DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In this study, the in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results are compared with the result by other methods for cases in which they are available. According to the analysis of the solutions, the DQM, used only a limited number of grid points, gives results which agree very well with the exact ones.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.

Can Lufthansa Successfully Limit its Liability to the Families of the Victims of Germanwings flight 9525 Under the Montreal Convention?

  • Gipson, Ronnie R. Jr.
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.279-310
    • /
    • 2015
  • The Montreal Convention is an agreement that governs the liability of air carriers for injury and death to passengers travelling internationally by air. The Montreal Convention serves as the exclusive legal framework for victims and survivors seeking compensation for injuries or death arising from accidents involving international air travel. The Montreal Convention sets monetary liability caps on damages in order to promote the financial stability of the international airline transport industry and protect the industry from exorbitant damages awards in courts that would inevitably bankrupt an airline. The Convention allows a litigant suing under the Convention to avoid the liability caps in instances where the airline's culpability for the injury or death is the direct result of negligence, another wrongful act, or an omission of the airline or its agents. The Montreal Convention identifies specific locations as appropriate venues to advance claims for litigants seeking compensation. These venues are closely tied to either the carrier's business operations or the passenger's domicile. In March 2015, in an act of suicide stemming from reactive depression, the co-pilot of Germanwings flight 9525 intentionally crashed the aircraft into the French Alps killing the passengers and the remaining crew. Subsequent to the crash, there were media reports that Lufthansa made varying settlement offers to families of the passengers who died aboard the flight ranging from $8,300 USD to $4.5 Million USD depending on the passengers' citizenship. The unverified offers by Lufthansa prompted outcries from the families of the decedent passengers that they would institute suit against the airline in a more plaintiff friendly jurisdiction such as the United States. The first part of this article accomplishes two goals. First, it examines the Montreal Convention's venue requirement along with an overview of the recoverable damages from countries comprising the citizenship of the passengers who were not American. The intentional crash of Germanwings flight 9525 by its First Officer encompasses the possibility that Lufthansa may be exposed to unlimited compensatory damages beyond the liability caps contained in the Convention. The second part of this article explores the application of the Convention's liability limits to the Germanwings flight to demonstrate that the likelihood of escaping the liability limits is slim.