• 제목/요약/키워드: Aircraft Load

검색결과 333건 처리시간 0.025초

분리하중에 대한 항공기용 외부연료탱크 구조 건전성 평가 (Evaluation of Structural Integrity of Aircraft External Fuel Tank for Separation Loads)

  • 김현기;김성찬;박민수;안수홍
    • 항공우주시스템공학회지
    • /
    • 제18권1호
    • /
    • pp.64-71
    • /
    • 2024
  • 항공기 외부연료탱크는 항공기의 항속거리를 증가시키는 주요 구성품으로써, 비상시 파일런에서 안정적으로 분리될 수 있어야 된다. 이 때, 외부연료탱크의 핀(fin)과 피벗(pivot)에는 분리하중이 작용하게 되는데, 외부연료탱크의 안정적인 분리를 위해서는 핀과 피벗의 구조 건전성이 입증되어야 한다. 본 연구에서는 항공기로부터 외부연료탱크가 분리 될 때 외부연료탱크의 핀과 피벗의 구조건전성 검증을 위해 수행된 구조시험 결과를 제시하였다. 본문에서는 구조시험에 사용되는 유압 및 하중제어장비, 데이터 획득장치 그리고 공압공급장치로 구성되는 시험구성도를 설명하였고, 각 시험조건에 대한 시험설치와 시험하중 인가계획을 제시하였다. 구조시험 결과, 각 시험조건에서 시험하중과 시험체의 내부압력이 허용 범위 내에서 적절히 제어되는 것으로 파악되었고, 시험체에서도 심각한 구조적 결함이 발생하지 않았음이 확인되었다. 최종적으로, 설계 제한하중과 설계 극한하중에 대한 구조시험을 통해서 본 연구의 항공기용 외부연료탱크 핀과 피벗은 충분한 구조 강도를 보유하고 있음을 확인하였다.

Hydrocode를 이용한 격납구조의 대형 민항기 충돌해석 (Analysis of Containment Building Subjected to a Large Aircraft Impact using a Hydrocode)

  • 신상섭;박대효
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.369-378
    • /
    • 2011
  • 본 논문은 RC(Reinforced Concrete), SC(Steel-Plate Concrete) 격납구조에 대한 대형 민항기 충돌에 관한 응답해석을 Hydrocode인 Autodyn-3D를 통해 수행하였다. 이전에 연구된 대부분의 항공기 충돌 해석에서의 충격 하중은 국부적인 부분(동체면적의 약 2배)에 대해 Riera의 충격하중함수를 적용하는 방법을 이용하여왔다. 하지만, 본 논문에서는 실제 Boeing 767과 유사한 모델을 구현하여 대상 구조체에 직접 충돌 시켜 나타나는 현상을 비교 분석 하였으며, 항공기 모델은 강성벽(Rigid Target)에 대해 항공기를 충돌 시켰을 시 발생되는 충돌하중이력곡선과, Riera 함수를 이용한 충돌하중이력곡선과의 비교를 통하여 검증하였다. 항공기 충돌 시, SC 격납구조에 대한 충돌저항능력 및 응답, 안전성 효과를 평가 하기 위해 무근 콘크리트(Plain Concrete:PC), 철근 콘크리트(Reinforced Concrete:RC), 철근 콘크리트와 완전 부착된 내부 Liner Plate(CLP:Containment Liner Plate), 그리고 SC 격납구조에 대한 해석을 수행하였다. 따라서 항공기 충돌과 같은 비정상충격하중이 RC구조와 SC구조에 가해질 경우에 대한 거동 예측이 가능하며, 보수적인 안전성이 요구되는 RC 원전 격납건물에 SC구조를 적용하면 상대적인 안전성 증대 효과를 기대 할 수 있을 것으로 보여진다.

AFP mandrel development for composite aircraft fuselage skin

  • Kumar, Deepak;Ko, Myung-Gyun;Roy, Rene;Kweon, Jin-Hwe;Choi, Jin-Ho;Jeong, Soon-Kwan;Jeon, Jin-Woo;Han, Jun-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.32-43
    • /
    • 2014
  • Automatic fiber placement (AFP) has become a popular processing technique for composites in the aerospace industry, due to its ability to place prepregs or tapes precisely in the exact position when complex parts are being manufactured. This paper presents the design, analysis, and manufacture of an AFP mandrel for composite aircraft fuselage skin fabrication. According to the design requirements, an AFP mandrel was developed and a numerical study was performed through the finite element method. Linear static load analyses were performed considering the mandrel structure self-weight and a 2940 N load from the AFP machine head. Modal analysis was also performed to determine the mandrel's natural frequencies. These analyses confirmed that the proposed mandrel meets the design requirements. A prototype mandrel was then manufactured and used to fabricate a composite fuselage skin. Material load tests were conducted on the AFP fuselage skin curved laminates, equivalent flat AFP, and hand layup laminates. The flat AFP and hand layup laminates showed almost identical strength results in tension and compression. Compared to hand layup, the flat AFP laminate modulus was 5.2% higher in tension and 12.6% lower in compression. The AFP curved laminates had an ultimate compressive strength of 1.6% to 8.7% higher than flat laminates. The FEM simulation predicted strengths were 4% higher in tension and 11% higher in compression than the flat laminate test results.

Digital Redesign of Gust Load Alleviation System using Control Surface

  • Tak, Hyo-Sung;Ha, Cheol-Keun;Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.675-679
    • /
    • 2005
  • This paper deals with the problem of gust load alleviation in active control for the case that aeroelasticity takes place due to interaction between wing structure and aerodynamics on wing when aircraft meets gust during flight. Aeroservoelasticity model includes wing structure modeled in FEM, unsteady aerodynamics in minimum state approximate method, and models of actuator and sensors in state space. Based on this augmented model, digitally redesigned gust load alleviation system is designed in sampled-data control technique. From numerical simulation, this digital control system is effective to gust load on aircraft wing, which is shown in transient responses and PSD analysis to random gust inputs.

  • PDF

항공기 집접낙뢰에 대한 동체 구조손상 인증 (Certification of Structure Damage from Direct Lightning)

  • 이해선
    • 항공우주시스템공학회지
    • /
    • 제6권3호
    • /
    • pp.13-18
    • /
    • 2012
  • Every 3000 hour an aircraft is stricken by a lightning. Also the lightning damage to the aircraft during flight are continually occurred due to extreme weather phenomena such as global warming. Under the airworthiness standards, the aircraft must be designed to protect lightning. To show compliance for lightning, the test should be conducted by the actual lightning current and voltage waveform for the actual aircraft or parts. After test, structure damage is detected via visual inspection or NDI. Structure substantiation for damage is to show retaining limit or near limit load capability. This is conducted by test or analysis based on test. Thus, the aircraft should retain structural strength to land safely, even though the damage of aircraft fuselage from Lightning strike are occurred.

Crack growth life model for fatigue susceptible structural components in aging aircraft

  • Chou, Karen C.;Cox, Glenn C.;Lockwood, Allison M.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.29-50
    • /
    • 2004
  • A total life model was developed to assess the service life of aging aircraft. The primary focus of this paper is the development of crack growth life projection using the response surface method. Crack growth life projection is a necessary component of the total life model. The study showed that the number of load cycles N needed for a crack to propagate to a specified size can be linearly related to the geometric parameter, material, and stress level of the component considered when all the variables are transformed to logarithmic values. By the Central Limit theorem, the ln N was approximated by Gaussian distribution. This Gaussian model compared well with the histograms of the number of load cycles generated from simulated crack growth curves. The outcome of this study will aid engineers in designing their crack growth experiments to develop the stochastic crack growth models for service life assessments.

항공기 조향장치 파손원인 사례연구 (A Case Study on the Fracture of Steering Apparatus for Aircraft)

  • 박성지
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.29-32
    • /
    • 2013
  • An aircraft made an emergency landing through the loss of capability controlling steering. A torsion link which is a part of steering apparatus has been adrift from the steering system and the bolt connected to the steering link has fractured. At the same time, the FLIR(Forward Looking Infrared Radar) mounted in front of the steering link has been also damaged. In the early of this investigation, we considered the failure of the FLIR had occurred first, that FLIR hit the steering link and finally the bolt fractured. The fractured section of the bolt has shown a beach mark and a dimple mark as well. The outside of the bolt has shown a large deformation by a heavy load. As a result, we have found out what the cause of the heavy load and the fractures for bolt, link and FLIR have occurred in what order.

회전익기 요 스웨지드 로드 분할에 따른 비행 안전성에 대한 해석적 접근 (An Analytical Approach to the Flight Safety of Split Yaw Swaged Rod for a Rotor Craft)

  • 임현규;최재형;김대한;장민욱;윤재휘;양필주
    • 한국항공운항학회지
    • /
    • 제25권3호
    • /
    • pp.74-80
    • /
    • 2017
  • As for A rotary wing aircraft, the configuration change about split yaw swaged rod was executed to improve hit treat capability for dealing with a long rod. The purpose of this study was to analyze if or not the quality of the split yaw swaged rod was obtained, and so the flight safety was ensured or not. Buckling analysis, Coupling Thread Strength Analysis, Thermal Stress analysis and Rod Natural Frequency Analysis were executed for structural analysis. The results of the analysis were presented that the split rod had the sufficient margin of safety and so there were no anomalies in the limit load and no failures in the ultimate load. And there were no resonances in result of natural frequency analysis. In conclusion, this study showed that the split yaw swaged rod had structural safety, so flight safety of rotary wing aircraft was secured and there was no problem in aircraft operation. It is certain that the technology of splitting the yaw swage rod will contribute to the operational Safety of the rotary wing aircraft in the future.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.