• Title/Summary/Keyword: Aircraft Design

Search Result 1,304, Processing Time 0.022 seconds

Aircraft derivative design optimization considering global sensitivity and uncertainty of analysis models

  • Park, Hyeong-Uk;Chung, Joon;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.268-283
    • /
    • 2016
  • Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, RBDO, and PBDO results for given requirements.

Adaptable conceptual aircraft design model

  • Fioriti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.43-67
    • /
    • 2014
  • This paper presents a new conceptual design model ACAD (Adaptable Conceptual Aircraft Design), which differs from the other models due to its considerable adaptability to the different classes of aircraft. Another significant feature is the simplicity of the process which leads to the preliminary design outputs and also allowing a substantial autonomy in design choices. The model performs the aircraft design in terms of total weight, weight of aircraft subsystems, airplane and engine performances, and basic aircraft configuration layout. Optimization processes were implemented to calculate the wing aspect ratio and to perform the design requirements fulfillment. In order to evaluate the model outcomes, different test cases are presented: a STOL ultralight airplane, a new commuter with open-rotor engines and a last generation fighter.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

Rapid Design Method and System Development for Aircraft Wing Structure

  • Tang, Jiapeng;Han, Jing;Luo, Mingqiang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This work is mainly done by too many manual operations in the aircraft structure design process resulting in heavy workload, low efficiency and quality, non-standardized processes and procedures. A top-down associated design method employing the template parametric technology is proposed here in order to improve the quality of design and efficiency of aircraft wing structure at the preliminary design stage. The appropriate parametric tool is chosen and the rapid design system of knowledge-driven aircraft wing structure is developed. First, a skeleton model of aircraft wing structure is rapidly built up through the template encapsulated design knowledge. Associated design is then introduced to realize the association between the typical structural part and skeleton model. Finally, the related elements are referenced from skeleton model, and a typical structural part reflecting an automatic response for design changes of the upstream skeleton model is quickly constructed within the template. The rapid design system proposed and developed in this paper is able to formalize the design standardization of aircraft wing structure and thus the rapid generation of different aircraft wing structure programs and achieve the structural design knowledge reuse as well.

Advanced Design Synthesis Process for Rapid Aircraft Development (신속한 항공기 개발을 위한 통합 개념설계 프로세스에 대한 연구)

  • Park, Seung Bin;Park, Jin Hwan;Jeon, Kwon-Su;Kim, Sangho;Lee, Jae-Woo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.83-90
    • /
    • 2013
  • Integrated aircraft synthesis process for rapid analysis and design is described in this paper. Data flow between different analysis fields is described in details. All the data are divided into several groups according to importance and source of the data. Analysis of design requirements and certification regulations is carried out to determine baseline configuration of an aircraft. Overall design process can be divided into initial sizing, conceptual and preliminary design phases. Basic data for conceptual design are obtained from initial sizing, CAD and geometry analysis. Basic data are required input for weight, aerodynamics and propulsion analyses. Results of this analysis are used for stability and control, performance, mission, and load analysis. Feasibility of design is verified based on analysis results of each discipline. Design optimization that involves integrated process for aircraft analysis is performed to determine optimum configuration of an aircraft on a conceptual design stage. The process presented in this paper was verified to be used for light aircraft design.

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.

Development of the Aircraft Materials Selector Expert System

  • Lim, Kang-Hee;Guan, Zhi-Dong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.302-305
    • /
    • 2005
  • To comply to demand for a development requirement of aircraft design part, the expert system builds up standard knowledge-base based on presently maintained expert knowledge and experience in aircraft structure material selection. It also builds up database based on aircraft design open data, and standard calculation module used for present design and analysis method. This system is developed using Visual Basic language. The expert system standardize aircraft structure material selection and can be applied to all type of elementary stage of aircraft structure design. It is working on Windows, which has a friendly interface and is convenient for debugging, maintenance and transplanting. Explanation of the structure and the function of the system was given in this paper.

  • PDF

Development of a multidisciplinary design optimization framework for an efficient supersonic air vehicle

  • Allison, Darcy L.;Morris, Craig C.;Schetz, Joseph A.;Kapania, Rakesh K.;Watson, Layne T.;Deaton, Joshua D.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.17-44
    • /
    • 2015
  • A modular multidisciplinary analysis and optimization framework has been built with the goal of performing conceptual design of an advanced efficient supersonic air vehicle. This paper addresses the specific challenge of designing this type of aircraft for a long range, supersonic cruise mission with a payload release. The framework includes all the disciplines expected for multidisciplinary supersonic aircraft design, although it also includes disciplines specifically required by an advanced aircraft that is tailless and has embedded engines. Several disciplines have been developed at multifidelity levels. The framework can be readily adapted to the conceptual design of other supersonic aircraft. Favorable results obtained from running the analysis framework for a B-58 supersonic bomber test case are presented as a validation of the methods employed.

Design space exploration in aircraft conceptual design phase based on system-of-systems simulation

  • Tian, Yifeng;Liu, Hu;Huang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.624-635
    • /
    • 2015
  • Design space exploration has been much neglected in aircraft conceptual design phase, which often leads to a waste of time and cost in design, manufacture and operation process. It is necessary to explore design space based on operational system-of-systems (SoS) simulation during the early phase for a competitive design. This paper proposes a methodology to analyze aircraft performance parameters in four steps: combination of parameters, object analysis, operational simulation, and key-parameters analysis. Meanwhile, the design space of an unmanned aerial vehicle applied in earthquake search and rescue SoS is explored based on this methodology. The results show that applying SoS simulation into design phase has important reference value for designers on aircraft conceptual design.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.