• Title/Summary/Keyword: Aircraft Crash

Search Result 59, Processing Time 0.025 seconds

Study on Fatigue Life Estimation for Aircraft Engine Support Structure (항공기 엔진 지지구조물의 피로수명 해석에 관한 연구)

  • Hur, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1667-1674
    • /
    • 2010
  • The fatigue life is estimated while determining the reliability of aircraft structures. In this study, the estimation of fatigue life was carried out on the basis of a cumulative damage theory; the working S-N curve and the equivalent stress on the engine support structure significantly affect the safety of the aircraft. The maximum stress observed was 1,080 MPa in the case of scissors link under crash load condition, and there was a 5% margin for the allowable stress corresponding to the temperature reduction factor. The maximum stress was 876 MPa, and the stress equation coefficient had a maximum value of 0.019 MPa/N in the case of scissors link under fatigue loads. In the results of the fatigue life analysis, the safety life in a fretting area of scissors link upper part was 416,667 flight hour, and other parts showed to infinite life. Therefore, it was demonstrated that the fatigue life requirement of aircraft engine support structure (scissors link, straight link) could be satisfied.

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

A Study of SHEL Model Application to Passenger Brace Position Information of Korean Air Carriers (우리나라 항공사의 승객 충격방지 자세 정보에 대한 SHEL모델 적용 연구)

  • Yoo, Kyung In;Kim, Mu Geun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.125-132
    • /
    • 2015
  • 항공기 추락 시 충돌충격단계에서 사상자가 가장 많이 발생하는 것으로 나타나고 있다. 대부분의 경우, 승객들은 두부손상으로 의식을 잃게 되어 비상탈출에 실패하여 사망에 이르게 된다. 이에 대한 대응책으로 항공기 제작사들은 내구성이 강화된 항공기 좌석을 설계 및 제작하여 설치하고 있다. 객실에서는 승객들이 충격방지자세를 취함으로써 부상을 최소화할 수 있다. 승객들에 대한 충격방지자세 안내는 모든 항공사가 시간적 여유가 있는 비상상황에서만 객실승무원이 안내방송과 함께 시범을 보이도록 절차가 수립되어 있다. 그러나 갑작스런 사고의 경우 승객들은 충격방지자세에 대한 정보를 전달받지 못한 상태에서 사상의 위험에 직면하게 된다. 본 논문은 SHEL 모델을 적용하여 승객과 사상자발생 환경, 승객과 충격방지를 위한 안전절차, 승객과 승객안전정보 전달매체, 승객과 객실승무원등의 상호작용에 내재된 위해요소를 체계적으로 규명하고 객실안전에 대한 법규 및 절차 등의 개정을 제시함으써, 항공기사고로 인한 사상자 발생에 대한 근본적인 대안을 제시하여 항공안전 증진에 기여하고자 한다.

Indonesia, Malaysia Airline's aircraft accidents and the Indonesian, Korean, Chinese Aviation Law and the 1999 Montreal Convention

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.37-81
    • /
    • 2015
  • AirAsia QZ8501 Jet departed from Juanda International Airport in, Surabaya, Indonesia at 05:35 on Dec. 28, 2014 and was scheduled to arrive at Changi International Airport in Singapore at 08:30 the same day. The aircraft, an Airbus A320-200 crashed into the Java Sea on Dec. 28, 2014 carrying 162 passengers and crew off the coast of Indonesia's second largest city Surabaya on its way to Singapore. Indonesia's AirAsia jet carrying 162 people lost contact with ground control on Dec. 28, 2014. The aircraft's debris was found about 66 miles from the plane's last detected position. The 155 passengers and seven crew members aboard Flight QZ 8501, which vanished from radar 42 minutes after having departed Indonesia's second largest city of Surabaya bound for Singapore early Dec. 28, 2014. AirAsia QZ8501 had on board 137 adult passengers, 17 children and one infant, along with two pilots and five crew members in the aircraft, a majority of them Indonesian nationals. On board Flight QZ8501 were 155 Indonesian, three South Koreans, and one person each from Singapore, Malaysia and the UK. The Malaysia Airlines Flight 370 departed from Kuala Lumpur International Airport on March 8, 2014 at 00:41 local time and was scheduled to land at Beijing's Capital International Airport at 06:30 local time. Malaysia Airlines also marketed as China Southern Airlines Flight 748 (CZ748) through a code-share agreement, was a scheduled international passenger flight that disappeared on 8 March 2014 en route from Kuala Lumpur International Airport to Beijing's Capital International Airport (a distance of 2,743 miles: 4,414 km). The aircraft, a Boeing 777-200ER, last made contact with air traffic control less than an hour after takeoff. Operated by Malaysia Airlines (MAS), the aircraft carried 12 crew members and 227 passengers from 15 nations. There were 227 passengers, including 153 Chinese and 38 Malaysians, according to records. Nearly two-thirds of the passengers on Flight 370 were from China. On April 5, 2014 what could be the wreckage of the ill-fated Malaysia Airlines was found. What appeared to be the remnants of flight MH370 have been spotted drifting in a remote section of the Indian Ocean. Compensation for loss of life is vastly different between US. passengers and non-U.S. passengers. "If the claim is brought in the US. court, it's of significantly more value than if it's brought into any other court." Some victims and survivors of the Indonesian and Malaysia airline's air crash case would like to sue the lawsuit to the United States court in order to receive a larger compensation package for damage caused by an accident that occurred in the sea of Java sea and the Indian ocean and rather than taking it to the Indonesian or Malaysian court. Though each victim and survivor of the Indonesian and Malaysia airline's air crash case will receive an unconditional 113,100 Unit of Account (SDR) as an amount of compensation for damage from Indonesia's AirAsia and Malaysia Airlines in accordance with Article 21, 1 (absolute, strict, no-fault liability system) of the 1999 Montreal Convention. But if Indonesia AirAsia airlines and Malaysia Airlines cannot prove as to the following two points without fault based on Article 21, 2 (presumed faulty system) of the 1999 Montreal Convention, AirAsia of Indonesiaand Malaysia Airlines will be burdened the unlimited liability to the each victim and survivor of the Indonesian and Malaysia airline's air crash case such as (1) such damage was not due to the negligence or other wrongful act or omission of the air carrier or its servants or agents, or (2) such damage was solely due to the negligence or other wrongful act or omission of a third party. In this researcher's view for the aforementioned reasons, and under the laws of China, Indonesia, Malaysia and Korea the Chinese, Indonesian, Malaysia and Korean, some victims and survivors of the crash of the two flights are entitled to receive possibly from more than 113,100 SDR to 5 million US$ from the two airlines or from the Aviation Insurance Company based on decision of the American court. It could also be argued that it is reasonable and necessary to revise the clause referring to bodily injury to a clause mentioning personal injury based on Article 17 of the 1999 Montreal Convention so as to be included the mental injury and condolence in the near future.

Development and Assessment of Crashworthy Composite Subfloor for Rotorcrafts (회전익 항공기용 복합재 내추락 하부동체 구조 개발 및 검증)

  • Park, Ill Kyung;Lim, Joo Sup;Kim, Sung Joon;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.18-31
    • /
    • 2018
  • Rotorcrafts have more severe crashworthiness conditions than fixed wing aircraft owing to VTOL and hovering. Recently, with the increasing demand for highly efficient transportation system, application of composite materials to aircraft structures is increasing. However, due to the characteristics of composite materials that are susceptible to impact and crash, demand to prove the crashworthiness of composite structures is also increasing. The purpose of present study is to derive the structural concept of composite subfloor for rotorcrafts and verify it. In order to design a crashworthy composite subfloor, the conceptual design of the testbed helicopter for the demonstration and the derivation of energy absorbing requirement were carried out, and the composite energy absorber was designed and verified. Finally, the testbed for the demonstration of a crashworthy composite structure was fabricated, and performed free drop test. It was confirmed that the test results meet the criteria for ensuring occupant survivability.

THE OPAL (OPEN POOL AUSTRALIAN LIGHT-WATER) REACTOR IN AUSTRALIA

  • Kim Sung-Joong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.443-448
    • /
    • 2006
  • The OPAL (Open Pool Australian Light-water) reactor is currently being constructed to replace HIFAR (HI-Flux Australian Reactor, commissioned in 1958) in mid-2006. HIFAR will be shutdown for decommissioning after several months of simultaneous operation with OPAL for smooth transition of operating systems and business. OPAL is a 20 MW multipurpose research reactor for radioisotope production, irradiation services and neutron beam research. The OPAL reactor uses low enriched uranium fuel in a compact core, cooled by light water and moderated by heavy water, yielding maximum thermal flux not less than $4{\times}10^{14}ncm^{-2}s^{-1}$. The reactor containment building is constructed of reinforced concrete and has been designed to protect the reactor from all external events such as seismic occurrences and impact from a hypothetical light aircraft crash. This paper describes the main elements of the reactor design and its applications.

Assessment for Failure Probability of Landing Gear Structural Fuse and Improvement Measure (착륙장치용 Structural Fuse 파손확률 계산 및 개선 방안)

  • Lee, Seung-Gyu;Kim, Tae-Uk;Hwang, In-Hee;Lee, Jeong-Sun;Jo, Jeong-Jun;Park, Chong-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.469-474
    • /
    • 2008
  • The reason for crashworthy landing gear is to contribute to the overall aircraft design goals in the event of a crash. One of crashworthy landing gear design approaches is inclusion of structural fuse. Structural fuse is used to control the mode of failure of landing gear. If structural fuse doesn't work at desired condition, other unexpected accidents can occur. In this paper, failure probability is calculated for landing gear structural fuse and improvement measure is introduced to improve failure probability of structural fuse.

  • PDF

Vertical response spectra for an impact on ground surface

  • Constantopoulos, Ioannis V.;Van Wessem, Yukiko;Verbrugge, Jean-Claude
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.435-455
    • /
    • 2012
  • An impact on the ground surface may represent several phenomena, such as a crash of an airplane or an explosion or the passage of a train. In order to analyze and design structures and equipment to resist such a type of shocks, the response spectra for an impact on the ground must be given. We investigated the half-space motions due to impact using the finite element method. We performed extensive parametric analyses to define a suitable finite element model and arrive at displacement time histories and response spectra at varying distances from the impact point. The principal scope of our study has been to derive response spectra which: (a) provide insight and illustrate in detail the half-space response to an impact load, (b) can be readily used for the analysis of structures resting on a ground subjected to an impact and (c) are a new family of results for the impact problem and can serve as reference for future research.

Analysis of Aircraft Upset through TEM and Improvement of UPRT (항공기 비정상 자세 사고의 TEM 분류 및 UPRT 향상에 관한 연구)

  • Choi, Jin-Kook;Jeon, Seung-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.365-374
    • /
    • 2019
  • Loss of Control in Flight(LOC-I) due to aircraft upset attitude has the highest air accident rate, and International Aviation Institute such as ICAO and FAA recommended flight crew to operate aircraft safely through UPRT(Upset Prevention & Recovery Training) program. ICAO has selected Loss of Control(LOC) as key safety indicator, and recommended to respond using TEM(Threat and Error Management). However there are not much specific treats and errors classified for UPRT programs using real TEM based on evidences. This study intends to consider the importance of UPRT through the introduction of UPRT and accident analysis using TEM. Typical upset accidents were classified to common threats as IFR, inadequate training, Automation surprise, and inexperienced copilots. The common errors were cross-check, speed and altitude deviation, callouts, communication, thrust and stall action fail. The undesired aircraft states were inadequate automation mode, Deviation of speed and vertical, stall, and crash. These suggest areas to improve UPRT.

Evaluation of Local Damage of SC Wall using Local Collision Simulation (국부충돌해석에 의한 SC벽체의 국부손상 평가)

  • Woo, Dong In;Chung, Chul Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.265-274
    • /
    • 2015
  • The structural safety of nuclear power plant against impact from aircraft crash has been performed so far in two viewpoints such as local behavior and global behavior, and the local behavior has been evaluated using local damage evaluation formulas suggested based on the results of experimental data of RC (Reinforcement Concrete) wall. However, few data have been collected from recent research to evaluate the local behavior and damage of SC (Steel plate reinforced Concrete) wall, which is recently applied to the newly designed nuclear power plant. In this study, local damages of SC wall and RC wall against an idealized aircraft engine projectile impact are evaluated through FE simulation analyses with various wall thicknesses and steel ratio. Through analysis of local collision simulation results of SC and RC wall, the penetration depth of SC wall and RC wall are compared.