• Title/Summary/Keyword: Aircraft Composite Material Part

Search Result 16, Processing Time 0.03 seconds

Repair methods for aging aircraft and application of composite patch repair (노후항공기의 보수 방법 및 복합재 패치보수의 응용)

  • 김위대;김종진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.167-172
    • /
    • 2002
  • During the operation of military aircraft, maintenance is divided into organizational, intermediate and depot maintenance. In the depot maintenance, after removal of major parts and removable doors, damage assessment is performed. Locating damage, charactering the damage and determining its extent, zoning the damage on the part being repaired and re-evaluation of the damaged area after damage removal. Repair joints are classified by bonded joints and bolted joints, depending on joining material. In this paper, repair method in aging aircraft is investigated and the possibility of application of copmposite patch is surveyed.

  • PDF

A Study on the Certification System and Development Plan of Domestic Composite Material for Aircraft Use (항공기용 국산 복합재료 인증체계 및 발전방향에 대한 연구)

  • Kim, Ilyoung
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • This paper presents the systematic and procedural approaches to ensure the safety of the composite material domestically developed and produced, for its use in the structure of aeronautical product in accordance with the applicable international standard, and to enhance its creditability. Based on this approaches, this paper eventually proposes the practical future plan to encourage and expand the adoption of domestic composite material as part of aeronautical product by aircraft manufacturer in global market.

Basic Design of Composite Wing Box for Light Aircraft (소형 항공기 복합재 주익 구조의 기본 설계)

  • Park, Sang-Yoon;Doh, Hyun-Il;Hwang, Myoung-Sin;Eun, Hee-Bong;Choi, Won-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.74-81
    • /
    • 2004
  • In this study preliminary structural design has been performed to develop an all composite wing box for experimental aircraft(classified in FAR Part 21). Considerations on composite materials and their manufacturing process were taken into account throughout the design phase. Aerodynamic loads were estimated by using Shrenk method(NACA TM No 948) and FAR Part 23 Appendix A. The structural layout has been determined to carry effectively the critical loads and to maximize the benefit of composite structure. Maximum strain failure allowable and first ply failure criteria were applied for the sizing of major structural members. Finally, the designed composite wing box structure is presented in the form of drawings, which include material specifications, stacking sequences and joint design.

Selection Methodology of Tool for Co-cured Composite Materials (동시경화용 복합재료의 특성에 따른 금형의 선택방법)

  • 홍중표;이종옥;이원곤;홍정수;지우석;조한준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.183-188
    • /
    • 2002
  • Co-cured composite materials has its own characteristics, so its thermal expansion is different each other. The selection of tool material for co-cured composite part in high temperature more over $350^{circ}F$ and 50 Psi pressure have to consider part thermal expansion, size, shape, and economic aspect in production line. So it is important choose tooling material in manufacturing composite parts. We called the tool for airplane composite parts as BAJ (Bonding Assembly Jig). Composite parts are cured on the BAJ in autoclave. BAJ have to stable at high temperature over $350^{circ}F$ and 50 Psi pressure, Considering composite parts' dimensional tolerance compare to heat up in autoclave. This paper come from the results of the experiment at the composite parts production line and review other aircraft company's method for tooling This is for the engineer engaged in composite parts manufacturing.

  • PDF

A Study on Job Stress of Aircraft Composite Material Part Manufacturing Workers (항공기 복합소재 부품 제조업 종사자의 직무 스트레스 분석)

  • Yoon, Hoon-Yong;Lee, Choon-Jae;Jang, Jun-Hyuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.751-762
    • /
    • 2010
  • The purpose of this study was to investigate the job stress factors of aircraft composite material part manufacturing workers using survey based on 'Job stress factors evaluation tool for Koreans' that was developed by KOSHA in 2003. Two hundred and fifty workers participated in this study, and among them 204 responses were analyzed for this study due to the unreliability and insincerity of responses. The eight job stress factors which are physical environment, job autonomy, job insecurity, organizational system, workplace culture, unfair compensation, relationship conflict, and job requirement were analyzed. The results showed that the stress level of the six job stress factors which are physical environment, job autonomy, job insecurity, organizational system, workplace culture, unfair compensation was relatively higher than that of other industry workers. Generally, all eight job stress factors showed higher stress with temporary workers than with permanent workers, and especially job autonomy, job insecurity, organizational system, and unfair compensation factors showed statistically significant differences (p<0.05). Since the temporary workers are insecure with their job, weak position in organization, having little self-control for the job and lower pay level than that of permanent workers though the job is as same as permanent workers', the stress level of above job stress factors would be much higher than that of the other factors. The group of unsatisfactory with workplace showed higher job stress than group of satisfactory with workplace in all job stress factors, as expected, at the statistically significance level (p<0.05). From the results of this study, the work loss due to the job stress could be prevented, and accurate stress factors could be removed at the workplace. Also the job stress management program can be implemented to improve the work efficiency and the workers' quality of life.

A Consideration on Composite Material Certification for Small Aircraft Structure (복합재 소형 항공기 구조 인증 고려사항에 대한 고찰)

  • Suh, Jang-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.128-140
    • /
    • 2009
  • In this paper, the technical problems or considerations which could be arisen at the certification for composite small aircraft structures per FAR Part 23 have been reviewed and the actions expected applicants should take also have been explored. This paper focuses on the technical problems considered to be happening and describes the relation to the certification regulations and to the certification experiences. This paper is general information to composite certification activities, and presents some useful guidance materials and reference materials. The general information described in this paper could not be applied to any composite structures and to the secondary structures which not critical to flight safety.

  • PDF

Analytical Study for the Safety of the Bird Strike to the Small Aircraft Having a Composite Wing (복합재 주익을 갖는 소형항공기 조류충돌 시 안전성에 관한 해석적 연구)

  • Park, Ill-Kyung;Kim, Seung-Jun;Choe, Ik-Hyun;An, Seok-Min;Yeo, Chan-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The bird strike to small aircraft has not been an issue because of its low speed and usage as a private aircraft. So, the compliance of the bird strike regulation is limited to large fixed-wing aircraft such as the commuter category in FAR Part 23 and the civil aircraft in FAR Part 25, generally. However, the forecast of dramatic increasing of VLJ(Very Light Jet), the usage of a composite material for an aircraft structure and flight time of general aviation due to Air-taxi for the point to point transportation, would rise up the need of bird strike regulations and a safety enhancement in normal and utility categorized aircraft. In this study, the safety of bird strike to small aircraft wing leading edge made of a metal and a composite material were compared using the explicit finite element analysis.

Compliance Validation Method of UAM Composite Part Manufacturing System based on Composite Material Qualification System (복합재료인증체계를 통한 UAM 용 복합재료 부분품 인증 적합성 확인 방안)

  • Cho, Sung-In;Yang, Yong Man;Jung, Seok-Ho;Kim, Je-Jun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2022
  • UAM (Urban Air Mobility) is a new safe, secure, and more sustainable air transportation system for passengers and cargo in urban environments. Commercial operations of UAM are expected to start in 2025. Since production rates of UAM are expected to be closer to cars than conventional aircraft, the airworthiness methodology for UAM must be prepared for mass production. Composite materials are expected to be mainly used for UAM structures to reduce weight. In this paper, the composite material qualification method was derived and the materials were applied for small aircraft application. It is expected to reduce the airworthiness certification time by applying composite material qualification system and its database.

Study on Material Properties of Composite Materials using Finite Element Method (유한요소법을 이용한 복합재의 물성치 도출에 대한 연구)

  • Jung, Chul-Gyun;Kim, Sung-Uk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.61-65
    • /
    • 2016
  • Composites are materials that are widely used in industries such as automobile and aircraft. The composite material is required as a material for using in a high temperature environment as well as acting as a high pressure environment like the nozzle part of the ship. It is important to know the properties of composites. Result values obtained substituting the properties of matrix and fiber numerically have an large error compared with experimental value. In this study we utilize CASADsolver EDISON program for using Finite Element Method. Properties by substituting the fiber and Matrix properties of the composite material properties were compared with those measured in the experiment and calculated by the empirical properties.

Destructive Test to Ensure Integrity of Composite Structure (파괴시험을 통한 복합재 구조물의 건전성 입증)

  • Yang, Hyun-Deok;Jeong, Duck-Young;Lee, Kyung-Cheol;Jin, Young-Kwon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.230-236
    • /
    • 2007
  • The quality control of composite structure includes inspection, testing and monitoring in all processes from receiving inspection to part fabrication. The purpose of these activities is to ensure that the design objectives are consistently achieved. The quality factors include material, receiving inspection, storage and shelf-life control, environmental control, testing, inspection and record control. This paper presents the process verification method using destructive test and quality control method in composite structure of aircraft. And it is believed that the destructive test will be basis to obtain a reliability of non-destructive test in complex composite structure and to ensure the design requirements in composite part.

  • PDF