• Title/Summary/Keyword: Aircraft Assessment

Search Result 173, Processing Time 0.02 seconds

Assessment of statistical sampling methods and approximation models applied to aeroacoustic and vibroacoustic problems

  • Biedermann, Till M.;Reich, Marius;Kameier, Frank;Adam, Mario;Paschereit, C.O.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.529-550
    • /
    • 2019
  • The effect of multiple process parameters on a set of continuous response variables is, especially in experimental designs, difficult and intricate to determine. Due to the complexity in aeroacoustic and vibroacoustic studies, the often-performed simple one-factor-at-a-time method turns out to be the least effective approach. In contrast, the statistical Design of Experiments is a technique used with the objective to maximize the obtained information while keeping the experimental effort at a minimum. The presented work aims at giving insights on Design of Experiments applied to aeroacoustic and vibroacoustic problems while comparing different experimental designs and approximation models. For this purpose, an experimental rig of a ducted low-pressure fan is developed that allows gathering data of both, aerodynamic and aeroacoustic nature while analysing three independent process parameters. The experimental designs used to sample the design space are a Central Composite design and a Box-Behnken design, both used to model a response surface regression, and Latin Hypercube sampling to model an Artificial Neural network. The results indicate that Latin Hypercube sampling extracts information that is more diverse and, in combination with an Artificial Neural network, outperforms the quadratic response surface regressions. It is shown that the Latin Hypercube sampling, initially developed for computer-aided experiments, can also be used as an experimental design. To further increase the benefit of the presented approach, spectral information of every experimental test point is extracted and Artificial Neural networks are chosen for modelling the spectral information since they show to be the most universal approximators.

A Case Study on Safety Analysis Procedure of Aircraft System using the Relex (Relex를 이용한 항공기 시스템 안전성 평가 절차 사례분석)

  • Lee, Dong-Woo;Kim, Ip-Su;Na, Jong-Whoa
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.179-188
    • /
    • 2018
  • In developing avionics systems, safety analysis and evaluation specified in SAE ARP4761 (Methods and Guidelines for Civil Aviation System and Equipment Safety Assessment Process) are carried out to prevent air accidents. Safety analysis requires knowledge of the abnormal state of the system, not its normal state, and its interrelationships with other standards. Therefore, a tool that automatically outputs data which proves compliance with safety certification standards is required. In this study,In this study, Schematized the safety analysis procedure of the specification and studied the method of applying the safety analysis CAD tools to individual procedure. As an example study, ARP4761 analysis was performed on the wheel brake system (WBS) of the ARP4761 appendix.

Ultimate Strength varying the Yield Stress of a Ship's Plate (선체판의 항복응력 변화에 따른 최종강도거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.179-183
    • /
    • 2005
  • The High-tensile steel has been recognized as a promising concept for structural design of light weight transportation systems such as aircraft high speed trains and fast ships. Using the high-tensile steel has been widely used in ship structures, and this enables to reduce the plate thickness. Using the high-tensile steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behavior of plate above primary buckling load is important. In this study, examined closely secondary buckling behavior after initial buckling of thin plate structure which operated compressive load according to the various kinds of yield stress with simply supported boundary condition. Analysis method is F.E.M by commercial program(ANSYS V7.1) and complicated nonlinear behaviour can analyze using art-length method about secondary buckling.

  • PDF

Assessment of Flight Control Performance based on the Ground Test Results of Smart UAV (스마트 무인기의 지상시험을 통한 비행제어 성능분석)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Kim, Yu-Shin;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The tilt-rotor Smart UAV(Unmanned Air Vehicle) has been developed by KARI(Korea Aerospace Research Institute) for civil purposes. In order to prove the reliabilities of total system of Smart UAV, the series of ground tests were performed including system interface test, aircraft HILS(Hardware In the Loop Simulation) Test, ground power test, 4-DOF (Degrees of Freedom)rig test, and tethered hover test. Many unexpected problems occurred at each ground test. With clearing these problems, the total Smart UAV systems were matured and the airworthiness was proven enough. After complete of additional ground test proposed by FRRB(Flight Readiness Review Board), the first flight test will be performed in this year. This paper presents the procedures and the analysis results of the ground tests for the tilt-rotor Smart UAV.

A Review of Clouds and Aerosols (구름과 에어로졸 고찰)

  • Yum, Seong Soo;Kim, Byung Gon;Kim, Sang Woo;Chang, Lim Seok;Kim, Seong Bum
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.253-267
    • /
    • 2011
  • This study summarizes some important results from the studies on clouds and aerosols, and their effects on climate in the northeast Asia that were made mainly by Korean scientists and some other scientists from around the world. Clouds and aerosols are recognized as one of the most important factors that contributes to uncertainties in climate predictions and therefore become the subject of active research in the western developed countries in recent years. However, the researches on clouds and aerosols are very weakly done in Korea except ground based measurements of aerosol physical, chemical and optical properties. These measurements indicate that aerosol loadings in the northeast Asia are generally much higher than other parts of the world. On the other hand, researches on clouds are few in Korea. Satellite and ground remote sensing, numerical modeling and aircraft in-situ measurements of clouds are highly needed for better assessment of the role of clouds on climate in the northeast Asia.

A Study on the Precursors of Aviation Turbulence via QAR Data Analysis (QAR 데이터 분석을 통한 항공난류 조기 인지 가능성 연구)

  • Kim, In Gyu;Chang, Jo Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.36-42
    • /
    • 2018
  • Although continuous passenger injuries and physical damages are repeated due to the unexpected aviation turbulence encountered during operations, there is still exist the limitation for preventing recurrence of similar events because the lack of real-time information and delay in technological developments regarding various operating conditions and variable weather phenomena. The purpose of this study is to compare and analyze the meteorological data of the aviation turbulence occurred and actual flight data extracted from the Quick Access Recorder(QAR) to provide some precursors that the pilot can identify aviation turbulence early by referring thru the flight instrumentation indications. The case applied for this study was recent event, a scheduled flight from Incheon Airport, Korea to Narita Airport, Japan that suddenly encountered turbulence at an altitude of approximately 14,000 feet during approach. According to the Korea Meteorological Administration(KMA)'s Regional Data Assessment and Prediction System(RDAPS) data, it was observed that the strong amount of vorticity in the rear area of jet stream, which existed near Mount Fuji at that time. The QAR data analysis shows significant changes in the aircraft's parameters such as Pitch and Roll angle, Static Air Temperature(SAT), and wind speed and direction in tens of seconds to minutes before encounter the turbulence. If the accumulate reliability of the data in addition and verification of various parameters with continuous analysis of additional cases, it can be the precursors for the pilot's effective and pre-emptive action and conservative prevention measures against aviation turbulence to reduce subsequent passenger injuries in the aviation operations.

Development and Application of Drop Impact Tester for Aerospace Structures (항공우주구조물 낙하충격시험기 개발 및 응용)

  • Yesol Shin;Hyejin Kim;Juho Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.56-64
    • /
    • 2024
  • In this study, a drop impact tester was developed to comprehensively conduct basic testing and academic research on the drop impact characteristics of aerospace structures. A drop tester enables accurate assessment of the dynamic stresses and deformations that occur when an aircraft collides with the ground, thereby enabling the verification of important design factors, such as safety and mechanical strength. The drop tester consists of an electromagnet to attach and drop the test object, a crane to adjust the drop height of the test object, and a drop support structure for vertical drops. Numerical analysis of the drop test object for the test was performed, and basic tests were performed using the drop impact tester. Through the analysis and test results, the structural shape of the landing gear was analyzed, and the behavior of each part was evaluated.

Performance Assessment of GBAS Ephemeris Monitor for Wide Faults (Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석)

  • Junesol Song;Carl Milner
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

A Study on the ICAO international aviation safety policy, a change of paradigm and the government response to the direction (ICAO 국제항공안전정책 패러다임의 변화 분석과 우리나라 신국제항공안전정책 검토)

  • Chang, Man-Heui;Hwang, Ho-Won
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.1
    • /
    • pp.73-96
    • /
    • 2013
  • ICAO's Universal Safety Oversight Audit Programme (USOAP) was initially launched in January 1995, in response to widespread concerns about the adequacy of aviation safety oversight around the world. The recent reduction in aircraft accidents and effective role that is evaluated on the basis of these results, and in 2013 the existing 'snapshot approach' to 'regular monitoring system (USOAP-Continuous Monitoring Approach)' was converted to. ICAO aviation safety assessment of the state in today's international community 'aviation safety credibility' as objective indicators to judge the enormous impact on the aviation industry, the state is not satisfactory, especially if the results of the evaluation and expansion of code-share airline ban, reduced international air transit passengers, including premium increases business and economic penalties should. In addition, ICAO implementation of the existing laws and regulations(Prescriptive Approach), but based on the Risk-based prevention model, Proactive Approach introduced the concept of aviation safety system, including international aviation safety policy has been to switch paradigms. This new ICAO international aviation safety policy also applies to the Government of the Republic of Korea in line with the aviation safey policies have changed. In particular, the systematic implementation of safety management for the existing laws and regulations in the center of the safety oversight system of risk-based introduction of the concept of proactive safety management, and According to international standards ICAO aviation service providers operate their own Safety Management System was set out in Aviation Law ever. In addition, the aviation safety is at the center of the field of the safety of aircraft operations and maintenance for the promotion is promoting various safety policies. This new paradigm shift in the international aviation safety policy in line with our state in the international community with the most exemplary aviation safety system firmly established itself as a model, the Government will strengthen the competitiveness of our aviation plans to support. To do this, the government, airlines, aviation officials try all the practical effect would be expected.

  • PDF

A Study on the Penetration Characteristics of a Steel Fragment Impacting on the Target Plate of Aluminum 2024 (알루미늄 2024 표적에 대한 HE 탄두 파편의 관통 특성 연구)

  • Kim, Deuksu;Kang, Sunbu;Jung, Daehan;Chung, Youngjin;Park, Yongheon;Park, Seikwon;Hwang, Changsu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.257-268
    • /
    • 2018
  • We have studied the damage mechanism of a metallic thin plate by the highly energetic fragments generated from high explosive(HE) warhead. The penetration process has presumed that the velocity of a fragment is in the range of 350 m/s to 3353 m/s, the thickness of Aluminum 2024 target plate is in the range of 1 mm~6.3 mm thick. The mass of fragment with hemisphere nose shape is in the range of 0.32 g to 16 g. The analytical solution for penetration process has been derived by using the report of the project THOR. The results of analysis implied that the closed forms by an exponentially decay function well fit the change of the ballistic limit velocity, loss velocity and loss mass of fragment as the mass of fragment and the thickness of target plate increase.