• Title/Summary/Keyword: Airborne Transmission

Search Result 71, Processing Time 0.028 seconds

Review of Recent Studies on the Airborne Infection (국내외 공기감염 분야 연구동향)

  • Kwon, Soon-Bark;Kim, Chang-Soo
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • Several studies have suggested the possibility of airborne transmission of infectious diseases such as tuberculosis, pandemic influenza. because the number of patients increases explosively, if infectious disease had a high basic reproduction number, pharmaceutical interventions such as vaccination, chemoprophylaxis in the early stage of epidemic. Thus, non-pharmaceutical interventions such as mask-wearing, installing air cleaners, school closure are important to control and prevent the infectious diseases. However, the current technology on the mask, air cleaning, ventilation, and etc., seems to be not originated from the understanding of infection via airborne transmission. It is important to estimate the aerodynamic behavior of saliva droplets by coughing or speaking in order to understand the phenomena of airborne infection. In addition, the prediction of transmission of infectious diseases through the air is critical to prevent or minimize the damage of infection. In this review, we reviewed the recent studies on the airborne infection by focusing on the aerodynamic characteristics of saliva droplets and modeling of airborne transmission.

Effectiveness of droplet protective screens and portable air purifiers against droplet and airborne transmission during conversation (비말 가림막과 휴대형 공기청정기 사용에 의한 대화 중 비말 및 공기전파 저감 효과)

  • Jieun, Heo;Dongho, Shin;Hee-Joo, Cho;Hyun-Seol, Park;Yun-Haeng, Joe
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.87-95
    • /
    • 2022
  • Currently, droplet protective screens (DPSs) are used to prevent the spread of respiratory diseases. As virus particles can maintain their infective in indoor environments, recent studies have investigated the risk of airborne transmission. However, the ability of DPSs to block airborne transmission has not been verified yet. In this study, the preventive ability of DPSs against droplet and airborne transmission was evaluated. Moreover, the effectiveness of a Portable air purifier (PAP) was investigated. According to results, in a simulated room where an infectious person spoke, the DPS blocked more than 90% of the micron-sized droplets (with a diameter larger than 1 ㎛) transmitted to the front of the infectious person. However, sub-micron droplets (with a diameter smaller than 1 ㎛) passed through the DPS and spread in a room. However, the PAP reduced the amount of both micron and sub-micron droplets transmitted to the front of the infectious person. When the PAP airflow direction was set from the DPS surface to the free space near the infectious person, improved prevention against droplet and airborne transmission was recorded. However, airborne transmission was accelerated when the PAP airflow direction was set from the free space to the DPS surface.

Effect of droplet protection screen height on the prevention ability of infectious droplet airborne transmission in closed space (밀폐공간에서 비말 가림막 높이에 따른 감염성 비말 공기전파 차단능력 평가)

  • Heo, Jieun;Cho, Hee-joo;Park, Hyun-Seol;Shin, Dongho;Shim, Joonmok;Joe, Yun-Haeng
    • Particle and aerosol research
    • /
    • v.17 no.2
    • /
    • pp.37-42
    • /
    • 2021
  • Although the installation of droplet protection screen (DPS) is known to prevent droplet transmission, there is still a lack of knowledge in effectiveness of DPS installation to block the airborne transmission. In this study, the prevention ability of DPS against airborne transmission was evaluated according to the DPS height. When the DPS was not installed, the maximum concentration of PM1.0 at the location opposite to infected person was 35% of that at the infected person location. When the DPS was installed, the DPS effectively prevented the airborne transmission, consequently approximately 7% of generated particles were measured at the opposite location from particle generation position (infected person location). The prevention ability of DPS increased with DPS height, the maximum prevention efficiency of 95.1% was obtained when the DPS height was 900mm. Moreover, the speed of airborne transmission was delayed by installation of DPS, and the delay time increased with DPS height.

An Experimental Study to Improve Measurement Reliability for the Airborne Sound Insulation Performance by Laboratory Test (실험실 실험을 통한 벽체 차음성능 측정의 신뢰성 향상을 위한 실험적 연구)

  • Kim, Hang;Park, Hyeon Ku;Ku, Hee Mo;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.35-44
    • /
    • 2014
  • Sound pressure levels in the receiving room while testing airborne sound insulation performance are varied by the measuring points. This may increase the measurement error, then decrease the measurement reliability. With this reason the research has carried out on the method to reduce deviations of sound pressure level in the ISO type rectangular laboratory focusing on the measurement of airborne sound insulation performance. Tests were made to see the effect of sound absorption in the receiving room, loudspeaker locations, microphones locations and flanking transmission path. Consequently, it was resulted that sound absorption in the receiving room and the loudspeaker location have influence on the sound level deviations especially in the low frequency. The microphone location was very important to get measurement reliability. The effective measuring point, which the sound level difference with average sound pressure level is within 2 dB, could yield most reliable average sound pressure level. Therefore it is necessary to find the effective measuring points in the receiving room. Flanking transmission path should be sealed using sound absorber or magnet etc. to prevent from lowering the sound insulation performance.

Analysis of the Disease Spread in a Livestock Building Using Tracer Gas Experiment (추적가스 실험을 통한 축사 내 질병 확산 분석)

  • Song, Sang-Hyeon;Lee, In-Bok;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Bitog, Jessie P.;Hong, Se-Woon;Seo, Il-Hwan;Moon, Oun-Kyeong;Kim, Yeon-Joo;Choi, Eun-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.37-45
    • /
    • 2012
  • Recently, the livestock industry in Korea was heavily affected by the outbreak of official livestock diseases such as foot and mouse disease, high pathogenic avian influenza, swine influenza, and so on. It has been established that these diseases are being spread through direct contact, droplet and airborne transmission. Among these transmissions, airborne transmission is very complex in conducting field investigation due to the invisibility of the pathogens and unstable weather conditions. In this study, the airborne transmission was thoroughly investigated inside a pig house by conducting tracer gas ($CO_2$) experiment because experiment with real pathogen is limited and dangerous. This is possible as it can be assumed that the flow is similar pattern very fine particles and gas. In the experiment, the ventilation structure as well as the location of gas emission were varied. The $CO_2$ detection sensors were installed at 0.5 and 1.3 m height from the floor surface. The tracer gas level was measured every second. Results revealed that the direction of spread can be determined by the response time. Response time refers to the time to reach 150 ppm from the gas emission source at each measuring points. The location of the main flow as well as the gas emission was also found to be very important factor causing the spread.

Experimental Study for Construction Equipment's Cabin Noise Control (건설장비 캐빈 저소음화를 위한 시험적 연구)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.802-808
    • /
    • 2009
  • In this paper, the experimental study on the identification of noise sources and noise transmission paths was carried out for the cabin noise control of construction equipment. In order to investigate noise and vibration characteristics of cabin structure, sound absorption, transmission, and radiation tests were performed using cabin assembly models. The noise/vibration source levels were obtained from the real cabins of wheel loader and excavator. Using transfer functions of cabins and real cabins' source data, cabin noise was decomposed into airborne and structureborne noise transmissions. Finally noise sources and major transmission paths were successfully identified for wheel loader and excavator's cabins.

Experimental Study for Construction Equipment's Cabin Noise Control (건설장비 캐빈 저소음화를 위한 시험적 연구)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.84-89
    • /
    • 2009
  • In this paper, the experimental study on the identification of noise sources and noise transmission paths was carried out for the cabin noise control of construction equipment. In order to investigate noise and vibration characteristics of cabin structure, sound absorption, transmission, and radiation tests were performed using cabin assembly models. The noise/vibration source levels were obtained from the real cabins of wheel loader and excavator. Using transfer functions of cabins and real cabins' source data, cabin noise was decomposed into airborne and structureborne noise transmissions. Finally noise sources and major transmission paths were successfully identified for wheel loader and excavator's cabins.

  • PDF

Estimation of flanking transmission due to difference between laboratory and field test (실험실 및 현장실험을 통한 벽체의 우회전달음 평가에 관한 연구)

  • Chung, J.Y.;Lee, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1383-1386
    • /
    • 2006
  • This study examines the difference of airborne sound isolation between laboratory and field test. The airborne sound isolation between adjacent dwellings in multi-family buildings is often much less than would be expected from the rated sound reduction index of the nominally-separating wall, due to structure-borne transmission of vibration at the junctions of wall. A variety of construction modifications to control such transmission have also been evaluated. This study presents a factor of the difference for flanking involving joint of wall, and shows the effect of some practical modifications that control the key flanking paths

  • PDF

Test & Evaluation of Airborne Communication, Navigation, Identification Equipment (항공 통신, 항법, 식별장비 시험평가)

  • Kim, Sung Woo;Kim, Min Su;Lee, Young Sik;Lee, Byoung Hwa;Oh, Woo Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.615-622
    • /
    • 2012
  • Airborne radio communications, navigation, and identification equipments are the basic equipment of airplane. Airborne radio communications, navigation, and identification equipments are characterized by user's many quantitative and qualitative requirements. These equipment look like simple test and evaluation, but they have many complex factors. This paper describe the test and evaluation of airborne radio communications, navigation, and identification equipments.

Transmission Characteristics of SARS-CoV-2 That Hinder Effective Control

  • Seongman Bae;Joon Seo Lim;Ji Yeun Kim;Jiwon Jung;Sung-Han Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.9.1-9.8
    • /
    • 2021
  • The most important characteristics of coronavirus disease 2019 (COVID-19) transmission that makes it difficult to control are 1) asymptomatic and presymptomatic transmission, 2) low incidence or lack of dominant systemic symptoms such as fever, 3) airborne transmission that may need a high infectious dose, and 4) super-spread events (SSEs). Patients with COVID-19 have high viral loads at symptom onset or even a few days prior to symptom onset, and most patients with COVID-19 have only mild respiratory symptoms or merely pauci-/null-symptoms. These characteristics of the virus enable it to easily spread to the community because most patients are unaware of their potential infectivity, and symptom-based control measures cannot prevent this type of transmission. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also capable of airborne transmission in conditions such as aerosol-generating procedures, under-ventilated indoor spaces, and over-crowded areas. In this context, universal mask-wearing is important to prevent both outward and inward transmission until an adequate degree of herd immunity is achieved through vaccination. Lastly, the SSEs of SARS-CoV-2 transmission emphasize the importance of reducing contacts by limiting social gatherings. The above-mentioned transmission characteristics of SARS-CoV-2 have culminated in the failure of long-lasting quarantine measures, and indicate that only highly effective vaccines can keep the communities safe from this deadly, multifaceted virus.