• Title/Summary/Keyword: Airborne Laser

Search Result 96, Processing Time 0.031 seconds

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River (항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로)

  • Lee, Jae Bin;Kim, Hye Jin;Kim, Jae Hak;Wie, Gwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.235-243
    • /
    • 2021
  • River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

Infrared Dual-field-of-view Optical System Design with Electro-Optic/Laser Common-aperture Optics

  • Jeong, Dohwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • We report a midinfrared dual-field-of-view (FOV) optical system design for an airborne electro-optical targeting system. To achieve miniaturization and weight reduction of the system, it has a common aperture and fore-optics for three different spectral wavelength bands: an electro-optic (EO) band ($0.6{\sim}0.9{\mu}m$), a midinfrared (IR) band ($3.6{\sim}4.9{\mu}m$), and a designation laser wavelength ($1.064{\mu}m$). It is free to steer the line of sight by rotating the pitch and roll axes. Our design co-aligns the roll axis, and the line of sight therefore has a fixed entrance pupil position for all optical paths, unlike previously reported dual-FOV designs, which dispenses with image coregistration that is otherwise required. The fore-optics is essentially an achromatized, collimated beam reducer for all bands. Following the fore-optics, the bands are split into the dual-FOV IR path and the EO/laser path by a beam splitter. The subsequent dual-FOV IR path design consists of a zoom lens group and a relay lens group. The IR path with the fore-optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ to $5.40^{\circ}{\times}4.32^{\circ}$), due to the insertion of two Si lenses into the zoom lens group. The IR optical system is designed in such a way that the location and f-number (f/5.3) of the cold stop internally provided by the IR detector are maintained when changing the zoom. The design also satisfies several important performance requirements, including an on-axis modulation transfer function (MTF) that exceeds 10% at the Nyquist frequency of the IR detector pitch, with distortion of less than 2%.

Construction and Application of 3D Image Model for GIS Spatial Analysis (GIS 공간분석을 위한 3D 영상모형의 구축과 활용)

  • Jung, Sung-Heuk;Lee, Kae-Dong;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.561-569
    • /
    • 2008
  • Currently, satellite image, aerial image and airborne laser scanning data are mostly used to build 3D image models. However, we are in need of quality 3D image models as current models cannot express topographic and features most elaborately and realistically. When making 3D image models, the model is first built and textures from terrestrial photos are applied to add realistic features to the model. This study analyzed techniques to use photogrammetry and laser scanning data to create a 3D image models with topography, building and statue that emphasize spatial accuracy, delicate depiction and photo-realistic imaging. 3D image models with spatial accuracy and photographic texture were built to be served via 3D image map services systems on the internet. The 3D image models can be used for various purposes, such as daylight and view right analysis, landscape analysis, facility management system.

Characteristics of Airborne Lidar Data and Ground Points Separation in Forested Area (산림지역에서의 항공 Lidar 자료의 특성 및 지면점 분리)

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Shin, Jung-Il;Woo, Choong-Shik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.533-542
    • /
    • 2006
  • Lidar point clouds provide three dimensional information of terrain surface and have a great advantage to generate precise digital elevation model (DEM), particularly over forested area where some laser signals are transmitted to vegetation canopy and reflected from the bare ground. This study initially investigates the characteristics of lidar-derived height information as related to vertical structure of forest stands. Then, we propose a new filtering method to separate ground points from Lidar point clouds, which is a prerequisite process both to generate DEM surface and to extract biophysical information of forest stands. Laser points clouds over the forest stands in central Korea show that the vertical distribution of laser points greatly varies by the stand characteristics. Based on the characteristics, the proposed filtering method processes first and last returns simultaneously without setting any threshold value. The ground points separated by the proposed method are used to generate digital elevation model, furthermore, the result provides the possibilities to extract other biophysical characteristics of forest.

A Study on Correction of Airborne Laser Scanning Intensity Data (항공레이저스캐닝(ALS) 반사강도의 보정에 관한 연구)

  • Shin, Dong-June;Chang, Hoon;Choi, Nak-Hoon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.267-272
    • /
    • 2005
  • 최근 항공레이저스캐닝(ALS)은 높은 정확도와 경제성을 이유로 지형정보를 획득하는 탁월한 수단으로 주목받고 있다. ALS에 의해 수집되는 고도자료는 DSM, DEM 제작에 유용하게 이용된다. ALS는 고도자료 이외에 지표면의 물질적 특성을 나타내는 반사강도를 획득한다. 그러나 반사강도는 노이즈로 인해 널리 이용되지 못하고 있으며, 노이즈의 주원인은 반사각으로 알려져 있다. 따라서 본 연구는 센서 위치정보와 ALS 고도자료를 이용하여 반사각을 이용하여 반사강도를 보정하는 방법을 제안하였다 여기에는 ${\theta}$의 각도로 입사한 레이저의 강도는 수직으로 입사한 레이저의 강도보다 $sin{\theta}$만큼 감소한다는 물리학적 원리가 이용되었다 반사각은 지표면과 레이저가 이루는 각으로, 센서와 측정점 사이의 각과 지표면의 경사각의 두 단계로 나누었다. 방법의 적합 여부를 확인하기 위해 적외선 영역에서 분리도가 잘 이루어지는 아스팔트, 휴경지(토양), 콘크리트, 수목의 네 가지 검증영역을 선정하여 보정된 반사강도와 보정 전의 반사강도를 비교하였다. 모든 영역에서 반사강도가 증가하였으며 특히 콘크리트와 수목에서의 증가가 두드러졌다. 보정을 통해 네 영역에서 반사강도의 분리도가 향상됨을 물론 그 크기가 '아스팔트<토양<콘크리트<수목'으로 나타나는 이론적인 경향과 유사함을 확인할 수 있다.

  • PDF

Study on Disaster Prevention and Monitoring System for Forest Fire Using Multi-Source GSIS Data (GSIS 다증자료를 이용한 방재 탐지체계에 관한 연구)

  • Lee Kang-Won;Kang Joon-Mook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.319-326
    • /
    • 2006
  • All around tile world there has been great human and economical damage continuously by disasters like the earthquakes and storms(Tsunami) in eastern asia which recently occurred, and like the New Orleams hurricane in USA. The situation is our countries damage from natural disasters due to heavy snow, storms, forest fires have been increasing In this research we obtained GSIS data of the 05' Yang-yang forest fire disaster area using multi-sensors like airborne laser data, GPS/INS, aerial photograph surveying. In result we produced digital topographical maps, digital elevation models, digital external models, digital images, infrared images. By, analyzing and comparing with past aerial photography we obtained the exact damage area, amount of damage, estimated tile areas where a landslide might occur, and we analyzed vegetations amount of damage and possibility of recovery.

  • PDF

Generation of Large-scale and High-resolution DEMs over Antarctica through a LIDAR survey

  • Lee, Im-Pyeong;Ahn, Yushin;Csatho, Bea;Schenk, Toni;Shin, Sung-Woong;Yoon, Tae-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1374-1376
    • /
    • 2003
  • NASA, NSF and USGS jointly conducted a LIDAR survey over several sites in the Antarctic Dry Valleys and its vicinity, acquiring numerous surface points by NASA's Airborne Topographic Mapper (ATM) conical laser scanning altimetry system. The data set have high blunder ratio, and the conical scanning pattern resulted large variation of the point densities. Hence, to reduce the undesirable effects due to these characteristics and process the huge number of points with reasonable time and resources, we developed a novel approach to generate large-scale and high-resolution DEMs in robust, efficient and nearly automatic manners. Based on this approach we produced DEMs and then verified them with reference data.

  • PDF

Generating Raster DSM from Airborne Laser Scanned Data Using Parallel Processing and Virtual Grid (병렬처리와 가상격자를 이용한 대용량 항공 레이저 스캔 자료의 정규격자 수치표면모델 생성)

  • Han, Soo-Hee;Heo, Joon;Kim, Sung-Sam;Kim, Sung-Hoon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.318-321
    • /
    • 2008
  • 본 연구에서는 대용량의 항공 레이저 스캔 포인트 자료로부터 정규 격자 형태의 수치 표면 모델을 고속으로 생성하기 위하여 가상격자와 병렬처리를 기반으로 한 자료 처리 기법을 제안하였다. 수십$\sim$수백 평방 킬로미터 영역에 대하여 항공 레이저 스캔을 중복적으로 수행할 경우 포인트 수는 수억$\sim$수십억에 이르며 이를 일반적인 시스템에서 처리하는 데에는 한계가 존재한다. 이에 본 연구에서는 병렬처리를 위해 구성한 피씨 클러스터 상에서 자료를 분산시켜 가상격자를 이용하여 처리하는 방식을 제안하였다. 즉, 마스터 노드는 포인트 자료를 읽어 들여 포인트의 평면 좌표 값에 따라 슬래이브 노드로 전송하고 각 슬래이브 노드에서는 전송받은 포인트를 가상 격자에 저장한 후 보간(interpolation)을 수행한다. 보간 방식으로는 IDW(Inverse Distance Weightin)을 사용하였으며 제안한 방식의 효율성을 평가하기 위하여 사용된 슬래이브 노드 수에 대한 처리 시간을 측정하였다.

  • PDF

Extraction and 3D Visualization of Trees in Urban Environment

  • Yamagishi, Yosuke;Guo, Tao;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1174-1176
    • /
    • 2003
  • Recently 3D city models are required for many applications such as urban microclimate, transportation navigation, landscape planning and visualization to name a few. The existing 3D city models mostly target on modeling buildings, but vegetation also plays an important role in the urban environment. To represent a more realistic urban environment through the 3D city model, in this research, an investigation is conducted to extract the position of trees from high resolution IKONOS imagery along with Airborne Laser Scanner data. Later, a tree growth model is introduced to simulate the growth of trees in the identified tree-positions.

  • PDF

Region Growing Method for Calculating Unmeasured Rate of Aerial LiDAR Data (항공라이다의 결측률 산출을 위한 영역확장 기법)

  • Han, Soung-Man;Kim, Ji-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • The airborne LiDAR which was introduced in the early 2000's provides the point data. The new methods for the verification of LiDAR materials with high accuracy which is different from the existing airborne survey are needed. In accordance with the rules of airborne laser survey which were enacted in 2009, the verifications by three methods of Unmeasured Rate and point accuracy, point density have been executed, and Unmeasured Rate is to evaluate the rate for the presence of points within uniform grids except non-reflective areas such as watershed areas. For the calculation of Unmeasured Rate, non-reflective areas should be removed by all means, and in case of normal LiDAR materials, as there are scant points for watershed areas, watershed areas should be divided by additional spatial information. So, in this study, the watershed areas were extracted using domain extension technique from the high resolution CIR images of 0.3m grade. In addition, in order to compare the accuracy of Unmeasured Rate calculated, the comparative analysis of the Unmeasured Rate calculated by digital maps has been done. In conclusion, we found that 1I1e accuracy of Unmeasured Rate extracted by domain extension technique is similar to the value extracted by digitizing technique.