• Title/Summary/Keyword: Airborne Laser

Search Result 96, Processing Time 0.025 seconds

The Evaluation of Architectural Density on Urban District using Airborne Laser Scanning Data (항공레이저측량 자료를 이용한 시가지 건축밀도 평가에 관한 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.95-106
    • /
    • 2003
  • This study evaluated the architectural density of urban district using airborne laser scanning(ALS) that is a method used in urban planning, water resources and disaster prevention with high interest recently. First, digital elevation model(DEM) and digital surface model(DSM) was constructed from Light detection and ranging(LiDAR). For getting the height of building, ZONALMEAN filter was used in DEM and ZONALMAJORITY filter was used in DSM. This study compared the floor from filtering with the floor from survey and got standard error, which is ${\pm}0.199$ floor. Also, through the overlay and statistical analysis of total-area layer and zone layer, we could present floor area ratio by zone. As a result of comparison with floor area ratio between airborne laser scanning data and survey data, the standard error of floor area ratio shows ${\pm}2.68%$. Therefore, we expect that airborne laser scanning data can be a very efficient source to decision makers who set up landuse plan in near future.

  • PDF

Cluster-Based Spin Images for Characterizing Diffuse Objects in 3D Range Data

  • Lee, Heezin;Oh, Sangyoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.377-382
    • /
    • 2014
  • Detecting and segmenting diffuse targets in laser ranging data is a critical problem for tactical reconnaissance. In this study, we propose a new method that facilitates the characterization of diffuse irregularly shaped objects using "spin images," i.e., local 2D histograms of laser returns oriented in 3D space, and a clustering process. The proposed "cluster-based spin imaging" method resolves the problem of using standard spin images for diffuse targets and it eliminates much of the computational complexity that characterizes the production of conventional spin images. The direct processing of pre-segmented laser points, including internal points that penetrate through a diffuse object's topmost surfaces, avoids some of the requirements of the approach used at present for spin image generation, while it also greatly reduces the high computational time overheads incurred by searches to find correlated images. We employed 3D airborne range data over forested terrain to demonstrate the effectiveness of this method in discriminating the different geometric structures of individual tree clusters. Our experiments showed that cluster-based spin images have the potential to separate classes in terms of different ages and portions of tree crowns.

A Study of Test Method for Position Reporting Accuracy of Airborne Camera (항공기 탑재용 카메라 위치출력오차 측정방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.646-652
    • /
    • 2013
  • PRA(Position Reporting Accuracy) for EO/IR(Electro-Optic/Infrared) airborne camera is an important factor in geo-pointing accuracy. Generally, rate table is used to measure PRA of gimbal actuated camera like EO/IR. However, it is not always possible to fix an EUT(Equipment for Under Test) to rate table due to capacity limit of the table on the size and weight of the object(EUT). Our EO/IR is too big and heavy to emplace on it. Therefore, we propose a new verification method of PRA for airborne camera and assess the validity of our proposition. In this method we use collimator, angle measuring instrument, 6 dof motion simulator, optical surface plate, leveling laser, inclinometer and poster(for alignment).

Automatic Building Extraction from Airborne Laser Scanning Data using TIN

  • Jeong Jae-Wook;Chang Hwi-Jeong;Cho Woosug;Kim Kyoung-ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.132-135
    • /
    • 2004
  • Building information plays a key role in diverse applications such as urban planning, telecommunication and environment monitoring. Automatic building extraction has been a prime interest in the field of GIS and photogrammetry. In this paper, we presented an automatic approach for building extraction from lidar data. The proposed approach is divided into four processes: pre-processing, filtering, segmentation and building extraction. Experimental results showed that the proposed method detected most of buildings with less commission and omission errors.

  • PDF

A study on the classifying vehicles for traffic flow analysis using LiDAR DATA

  • Heo J.Y.;Choi J.W.;Kim Y.I.;Yu K.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.633-636
    • /
    • 2004
  • Airborne laser scanning thechnology has been studied in many applications, DSM(Digital Surface Model) development, building extraction, 3D virtual city modeling. In this paper, we will evaluate the possibility of airborne laser scanning technology for transportation application, especially for recognizing moving vehicles on road. First, we initially segment the region of roads from all LiDAR DATA using the GIS map and intensity image. Secondly, the segmented region is divided into the roads and vehicles using the height threshold value of local based window. Finally, the vehicles will be classified into the several types of vehicles by MDC(Minimum Distance Classification) method using the vehicle's geometry information, height, length, width, etc

  • PDF

TECHNIQUE OF EXTRACTING BUILDING BOUNDARIES FROM SEGMENTED ALS POINTS

  • Lee, Jeong-Ho;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.141-144
    • /
    • 2008
  • Many studies have been conducted on extracting buildings from ALS(Airborne Laser Scanning) data. After segmentation or classification of building points, additional steps such as generalization is required to get straight boundary lines that better approximate the real ones. In much research, orthogonal constraints are used to improve accuracies and qualities. All the lines of the building boundaries are assumed to be either parallel or perpendicular mutually. However, this assumption is not valid in many cases and more complex shapes of buildings have been increased. A new algorithm is presented that is applicable to various complex buildings. It consists of three steps of boundary tracing, grouping, and regularization. The performance of our approach was evaluated by applying the algorithm to some buildings and the results showed that our proposed method has good potential for extracting building boundaries of various shapes.

  • PDF

LiDAR Analysis Using GPS Observation Station (상시관측소를 이용한 항공레이저측량 분석)

  • Yun, Hee-Cheon;Chang, Si-Hoon;Lee, Gun-Ho;Min, Seung-Hyun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.257-258
    • /
    • 2010
  • Recently data, which are obtained by the airborne laser scanner system have been utilized to rapidly obtain three-dimensional location coordinates for a large area. According to operation regulation, the distance between a GPS base station and a aircraft GPS is fixed within a radius of 30km. In this paper, we compare data obtained by GPS observation station operated in National Geographic Information Institute with those obtained by GPS base station for making a airborne laser survey.

  • PDF

An Approach for Segmentation of Airborne Laser Point Clouds Utilizing Scan-Line Characteristics

  • Han, Soo-Hee;Lee, Jeong-Ho;Yu, Ki-Yun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.641-648
    • /
    • 2007
  • In this study, we suggest a new segmentation algorithm for processing airborne laser point cloud data which is more memory efficient and faster than previous approaches. The main principle is the reading of data points along a scan line and their direct classification into homogeneous groups as a single process. The results of our experiments demonstrate that the algorithm runs faster and is more memory efficient than previous approaches. Moreover, the segmentation accuracy is generally acceptable.

  • PDF