• Title/Summary/Keyword: Airbone bacteria

Search Result 2, Processing Time 0.017 seconds

Investigation on Concentrations and Correlations of Airborne Microbes and Environmental Factors in the General Hospital (종합병원내 부유 미생물 농도 및 환경 요인과의 상관성 조사)

  • Lee, Chang-Rae;Kim, Ki-Yeon;Kim, Chi-Nyon;Park, Dong Uk;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • This survey was performed to measure concentrations of airborne microbes, utilizing the six-stage cascade air sampler, according to the sampling site and time in the general hospital and to evaluate the degree of correlations between airborne microbes and environmental factors. Besides the main lobby, airborne microbes and environmental factors were not significantly different between the forenoon(9:00-10:00 AM) and afternoon(2:00-3:00 PM). Concentrations of airborne bacteria and fungi were 404 and $156CFU/m^3$ in the main lobby, 188 and $56CFU/m^3$ in the intensive care unit, 323 and $96CFU/m^3$ in the ward, 239 and $127CFU/m^3$ in the laboratory, and 139 and $33CFU/m^3$ in the newborn baby room, respectively. As a result, the level of airborne microbes was significantly highest in the main lobby and lowest in the newborn baby room(p<0.05). Outdoor airborne microbes concentrations were significantly lower than those of the sampling sites in the general hospital except for the newborn baby room(p>0.05). It was observed that temperature, relative humidity and carbon dioxide in the general hospital had generally positive correlation with airborne microbes. However, there was no correlation between the odor index level and airborne microbes.

Assessment of airborne bioaerosols among different areas in the hospitals (일부 종합병원 내 영역별 공기 중 미생물 평가)

  • Cho, HyunJong;Hong, KyungSim;Kim, JiHoon;Kim, HyunWook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.115-125
    • /
    • 2000
  • Three major hospitals with over 500 beds located in and near Seoul were surveyed for airbone microorganisms from February 1, 1998 to February 18, 1998. The purpose of the study was to identify and quantify microbiological organisms circulating in the air of three different areas in the hospitals. For the study, a RCS air sampler was utilized equipped with two different collection media, the agar strip GK-A for bacteria and the agar strip HS for fungi. The areas investigated were the intensive care unit (ICU) in the Department of internal medicine, the Newborns room in the Department of Obstetrics, and the microbiology laboratory. The results were as follows; 1. The average numbers of general microbiological particles collected on the agar strip GK-A media were $205CFU/m^3$, $232CFU/m^3$, and $128CFU/m^3$ in each hospitals. The highest concentration of $387CFU/m^3$ was found in the ICU of A hospital at 15:00 during the day. Further analysis of the collected bioaerosols by gram staining, revealed that there were gram positive cocci (89.5%), gram positive bacilli (7.2%), gram negative bacilli (2.8%), and fungi (0.5%), in descending order of frequency. 2. Ten different genes were identified from the agar strip GK-A. The most frequently identified organisms were: the Coagulase negative staphylococcus (55.0%), Micrococcus (21.4%), Enterococcus species(10.4%), and Bacillus species (7.2%). A series of antibiotics susceptibility test were conducted against the aforementioned four(4) organisms. Ninety percent of coagulase negative stapylococcus were sensitive to Penicillins. Pathogenic microbes isolated include: Staphylococcus aureus, Acinetobacter species, Klebsiella pneumonia, Klebsiella oxytoca, and Pseudomonas aeroginosa. 3 Although 56.8% of the microorganisms grown on the strip HS media for fungi could not be identified, some of them were successfully identified. The most frequently found fungi were Aspergillus (35.3%), Yeast or Molds (6.2%), and Penicillium (0.7%). Based on the results obtained from the study, it was concluded that some areas in the hospitals had abnormally high bioaerosol concentrations which could be attributed to human activity. Therefore, it is recommended that periodic assessments of indoor bioaerosols aiming to identify the possible sources should be conducted in order to maintain clean indoor environment in the hospitals.

  • PDF