• 제목/요약/키워드: AirKorea

검색결과 24,414건 처리시간 0.044초

소형/고효율 고분자전해질 연료공급모듈용 Air Blower 개발에 관한 연구 (Study on Air Blower for Air Management System)

  • 최준혁;정인성;김주한;서정무;허진;성하경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.212-214
    • /
    • 2006
  • Air Management System is composed by Pump, Fan, Compressor and Blower In general their performances depend on the capability of the motor, power converter device and controller. Especially, it should be noticed upon designing Air Management System using for Fuel Cell System, that Pump, Fan, Compressor and Blower satisfy the condition of the high performance, high efficiency, high density and reasonable price considering the safety and Economic Efficiency. In order for this, it should be studied that which kind of Motor is the most suited for Air Management System for Fuel Cell, such as Induction Motor, Brushless DC Motor, and Switched Reluctance Motor which is widely using in industry. This paper presents the designing and manufacturing of Outer Rotor Type BLDC Motor and Driver for Air Blower of Air Management System. Experimental results from a laboratory prototype arc presented to validate the feasibility of the proposed Air Blower Motor and Driver.

  • PDF

Rail-Joint에서 퍼지룰을 기반으로하는 공극신호처리법 (Air-Gap Signal Treatment based Fuzzy Rule in Rail-Joint)

  • 성호경;조정민;이종무;배덕권;김봉섭;신병천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1071-1072
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

AHP 기법을 이용한 무인기 자율기능 우선순위 도출: 유무인 협업 공대공 교전을 중심으로 (Deriving Priorities between Autonomous Functions of Unmanned Aircraft using AHP Analysis: Focused on MUM-T for Air to Air Combat)

  • 정병호;오지현;설현주;황성인
    • 산업경영시스템학회지
    • /
    • 제45권1호
    • /
    • pp.10-19
    • /
    • 2022
  • Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.

반도체 클린룸용 배기 열회수식 에어와셔의 에너지 소비량 성능평가 실험 (An Experiment on Performance Evaluation of Energy Consumption of an Exhaust Air Heat Recovery Type Air Washer for Semiconductor Manufacturing Clean Rooms)

  • 송근수;유경훈;신대건;손승우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.844-849
    • /
    • 2008
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from outdoor air introduced into clean room. Meanwhile, there is a large quantity of exhaust air from clean room. From the energy saving point of view, heat recovery is useful for the reduction of air conditioning energy consumption for clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. However, so far there have not been sufficient studies of analyzing the comparison of the amounts of energy consumption and saving. In the present study, an experiment was conducted to investigate the energy consumption and heat recovery of a fin-coil type air washer system for semiconductor manufacturing clean rooms.

  • PDF

X선치료 조사야 내 공동의 존재에 따른 선량분포의 측정 (The Influence of Air Cavity on Interface Doses for Photon Beams)

  • 정세영;김영범;권영호;김유현
    • 대한방사선치료학회지
    • /
    • 제10권1호
    • /
    • pp.69-77
    • /
    • 1998
  • When a high energy photon beam is used to treat lesions located in the upper respiratory air passages or in maxillary sinus, the beams often must traverse an air cavity before it reaches the lesion. Because of this traversal of air, it is not clear that the surface layers of the lesion forming the air-tumor tissue interface will be in a state of near electronic equilibrium; if they are not, underdosing of these layers could result. Although dose corrections at large distances beyond an air cavity are accountable by attenuation differences, perturbations at air-tissue interfaces are complex to measure or calculate. This problem has been investigated for 4MV and 10MV X-ray beams which are becoming widely available for radiotherapy with linear accelerator. Markus chamber was used for measurement with variouse air cavity geometries in X-ray beams. Underdosing effects occur at both the distal and proximal air cavity interface. The magnitude depended on geometry, energy, field sizes and distance from the air-tissue interfaces. As the cavity thickness increased, the central axis dose at the distal interface decreased. Increasing field size remedied the underdosing, as did the introduction of lateral walls. Fellowing a $20{\times}2{\times}2\;cm^3$\;air\;cavity,\;4{\times}4\;cm\;field\;there\;was\;an\;11.5\%\;and\;13\%\;underdose\;at\;the\;distal\;interface,\;while\;a\;20{\times}20{\times}2\;cm^3\;air\;cavity\;yielded\;a\;24\%\;and\;29\%$ loss for the 4MV and 10MV beams, respectively. The losses were slightly larger for the 10MV beams. The measurements reported here can be used to guide the development of new calculation models under non-equilibrium conditions. This situation is of clinical concern when lesions such as larynx and maxillary carcinoma beyond air cavities are irradiated.

  • PDF