• Title/Summary/Keyword: Air-recirculation

Search Result 365, Processing Time 0.025 seconds

Flow Analysis indoor Coal Storage Shed due to Wind Velocity and Wind Direction of Ambient Air (외기의 풍속 및 풍향에 따른 옥내저탄장 내부 유동 해석)

  • Kim, Tae-Kwon;Cho, Mok-Lyang;Bae, Young-Wan;Kim, Ji-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.538-545
    • /
    • 2020
  • The outdoor coal storage sheds of thermal power plants are being converted to indoor coal storage sheds worldwide because of the environmental pollution problems in the surrounding areas. On the other hand, indoor coal storage sheds are causing problems, such as indoor coal scattering and harmful gas generation. In this study, the ventilation method of indoor coal storage sheds was analyzed in terms of the internal flow characteristics and ventilation according to the outside wind velocity and direction. CFD analysis was performed based on the actual flow measurement information inside the indoor coal storage sheds. A comparison of the wind speed of 6 m/s and 2 m/s when the outside wind direction was easterly showed that the stream velocity to the monitor louver was faster and the recirculation area was clearer at 6 m/s than at 2 m/s. In addition, the trend of a westerly wind was similar to that of the easterly wind. The ventilation rate according to the wind speed was 13.1 times and 4.4 times for a wind speed of 6 m/s and 2 m/s, respectively. If the wind speed is 2 m/s, the situation does not meet the required number of ventilations per hour in a general plant, and needs to be improved.

Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(II) - Concentration distribution and exposure characteristics of TSP, PM10, PM2.5, and heavy metals - (대구 안심연료단지 환경오염물질 노출 평가(II) - TSP, PM10, PM2.5 및 중금속 농도분포 및 노출특성 -)

  • Jung, Jong-Hyeon;Phee, Young-Gyu;Lee, Jun-Jung;Oh, In-Bo;Shon, Byung-Hyun;Lee, Hyung-Don;Yoon, Mi-Ra;Kim, Geun-Bae;Yu, Seung-do;Min, Young-Sun;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.380-391
    • /
    • 2015
  • Objectives: The objective of this study is to assess airborne particulate matter pollution and its effect on health of residents living near Ansim Briquette Fuel Complex and its vicinities. Also, this study measured and analyzed the concentration of TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals which influences on the environmental and respiratory disease in Ansim Briquette Fuel Complex, Daegu, Korea. Methods: In this study, we analyzed various environmental pollutants such as particulate matter and heavy metals from Ansim Briquette Fuel Complex that adversely affected local residents's health. In particular, we verified the concentration distribution and characteristics of exposure for TSP, $PM_{10}$, and $PM_{2.5}$ among particulate matters, and heavy metals(Cd, Cr, Cu, Mn, Ni, Pb, Fe, Zn, and Mg). In that regard, the official test method on air pollution in Korea for analysis of particulate matter and heavy metal in atmosphere were conducted. The large capacity air sampling method by the official test method on air pollution in Korea were applied for sampling of heavy metals in atmosphere. In addition, we evaluated the concentration of seasonal environmental pollutants for each point of residence in Ansim Briquette Fuel Complex and surrounding area. The sampling measured periods for air pollutants were from August 11, 2013 to February 21, 2014. Furthermore, we measured and analyzed the seasonal concentrations(summer, autumn and winter). Results: The average concentration for TSP, $PM_{10}$, and $PM_{2.5}$ by direct influence area at Ansim Briquette Fuel Complex were 1.7, 1.4 and 1.9 times higher than reference region. In analysis results of seasonal concentrations for particulate matter in four direct influence and reference area, concentration levels for winter were generally somewhat higher than concentrations for summer and autumn. The average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were $0.0008{\pm}0.0004{\mu}g/Sm^3$, $0.0141{\pm}0.0163{\mu}g/Sm^3$, $0.0248{\pm}0.0059{\mu}g/Sm^3$, $0.0026{\pm}0.0011{\mu}g/Sm^3$, $0.0272{\pm}0.0084{\mu}g/Sm^3$, $0.4855{\pm}0.1862{\mu}g/Sm^3$, and $0.3068{\pm}0.0631{\mu}g/Sm^3$, respectively. In particularly, the average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were 1.9, 3.6, 2.1, 1.9, 1.4, 2.6, and 1.2 times higher than reference area, respectively. The continuous monitoring and management were required for some heavy metals such as Cr and Ni. Moreover, the average concentration in winter for particulate matter in direct influence area at Ansim Briquette Fuel Complex were generally higher than concentrations in summer and autumn. Also, average concentrations for TSP, $PM_{10}$, and $PM_{2.5}$ were from 1.5 to 2.0 times, 1.2 to 1.8 times, and 1.1 to 2.3 times higher than reference area, respectively. In results for seasonal atmospheric environment, TSP, $PM_{10}$, $PM_{2.5}$, and heavy metal concentrations in direct influence area were higher than reference area. Especially, the concentrations in C station were a high level in comparison with other area. Conclusions: In the results, some particulate matters and heavy metals were relatively high concentration, in order to understand the environmental pollution level and health effect in surrounding area at Ansim Briquette Fuel Complex. The concentration of some heavy metals emitted from direct influence area at Ansim Briquette Fuel Complex were relatively higher than reference area. In particular, average concentration for heavy metals in this study were higher than average concentrations in air quality monitoring station for heavy metal for 7 years in Deagu metropolitan region. Especially, the residents near Ansim Briquette Fuel Complex may be exposed to the pollutants(TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals, etc) emitted from the factories in Ansim Briquette Fuel Complex.

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Contamination level and congener profiles of PCBs, Co-PCBs and PCDD/DFs in transformer insulation oil samples (변압기 절연유 중 PCBs, Co-PCBs 및 PCDD/PCDFs 오염수준 및 이성체 분포)

  • Kim, Kyoung-Soo;Kim, Jong-Guk;Shin, Sun-Kyoung;Kim, Kyoung-Sim;Song, Byung-Joo
    • Analytical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.263-271
    • /
    • 2006
  • The levels of total PCBs, Co-PCBs and PCDD/Fs in the transformer insulation oil samples obtained using GC/ECD and HRGC/HRMS were ranged from N.D. to 77.3 ppm, from 0.0863 to 2.49 ppm and from N.D. to 0.00241 ppm, respectively. In terms of WHO-TEQ values, Co-PCBs and PCDD/Fs were ranged from 23.3 to 600 pgTEQ/g and from N.D. to 128 pgTEQ/g, respectively (${\Sigma}Co$-PCBs+PCDD/Fs concentration was calculated 24.4~728 pgTEQ/g). Although, the contribution of PCDD/Fs was below 12% in total TEQ concentration, it is suggested contamination of PCDD/Fs in transformer insulation oils. Among 10 samples, 4 samples showed higher concentration than 2 ppm (specific waste criterion of Korea) and Aroclor 1242, 1248, 1254 and 1260 was detected in samples as a single or mixture of Aroclor. It was shown reliable relationship between concentration of Co-PCBs and those of PCDD/Fs (p<0.003), however, was not shown between production year of transformer and concentration of PCBs. The distribution pattern of Co-PCB congeners showed that the ratios of mono-ortho substituted congeners were higher than non-ortho substituted congeners. Among that, PCB-118 congener was predominant. In addition, the OCDD congener was predominated in PCDD/Fs congeners as above 53%. Moreover, the congener pattern of Co-PCBs was similar to that of Aroclor as well as ambient air, which suggested that PCBs volatilization from transformer insulation oil affected the pattern of Co-PCBs in ambient air.

A Study on Management of Seafood Wastewater Treatment Facility using Submerged MBR (침지식 MBR을 이용한 수산물 폐수처리장 운영에 관한 연구)

  • Choi, Yong-Bum;Lee, Hae-Seung;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7227-7236
    • /
    • 2015
  • The survey revealed that, due to the discharge characteristics of seafood wastewater, irregular inflow loads were caused, making it difficult to treat the wastewater safely. It is crucial for the operation of pressure and floating tanks for the treatment of high-concentration organic wastewater such as seafood wastewater. The survey of operation factors for the pressure and floating tanks revealed this: A/S ratio 0.05 (design criteria 0.01), the pressurized air pressure 8bar(design criteria 6bar), the pressure tank pressure 6bar (design criteria 4.5bar), and HRT 60sec(design criteria: 10sec). Also, the recirculation rate was changed to over 40%(design criteria: 30%), and the surface load rate was changed to under $13.7m^3/m^2{\cdot}hr$(design criteria: under $17.7m^3/m^2{\cdot}hr$); thus, compared to the initial design criteria, the operation factors were changed according to inflow characteristics, thus enhancing the pressure and floating tank performance. The survey of inflow load revealed BOD 140.7%, $COD_{Mn}$ 120.32%, and SS 106.3%, compared to the inflow design criteria, as well as T-N 135.5% and T-P173.3%, higher than the design criteria. The survey of the treatment facility annual operation cost revealed high portions in sludge treatment cost(27.7%) and chemicals costs(26.0%), and the sludge treatment cost will likely further increase due to the ban on ocean dumping. The unit cost for the treatment of seafood wastewater was found to be KRW 3,858 per ton, more than 27 times higher than the sewage treatment cost(KRW 142.6/ton), presumably because the seafood wastewater contains high-concentration organic substances and nutritive salts.