• Title/Summary/Keyword: Air-particle flow

Search Result 394, Processing Time 0.056 seconds

CFD Analysis of Axial Flow Cyclone Separator for Subway Station HVAC System (지하역사 공기조화기에 적용 가능한 미세먼지 제거용 사이클론의 수치해석적 연구)

  • Kim, Jin-Kwan;Kim, Ho-Joong;Lee, Myung-Jun;Kim, Tae-Sung;Kwon, Soon-Bark
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.546-550
    • /
    • 2008
  • In this study, 3-dimensional Computational Fluid Dynamics (CFD) analysis was induced to simulate air flow and particle motion in the axial flow cyclone separator. The commercialized CFD code FLUENT was used to visualize pressure drop and particle collection efficiency inside the cyclone. We simulated 4 cyclone models with different shape of vane, such as turning angle or shape of cross section. For the air flow simulation, we calculated the flow field using standard ${\kappa}-{\varepsilon}$ turbulence viscous model. Each model was simulated with different inlet or outlet boundary conditions. Our major concern for the flow filed simulation was pressure drop across the cyclone. For the particle trajectory simulation, we adopted Euler-Lagrangian approach to track particle motion from inlet to outlet of the cyclone. Particle collection efficiencies of various conditions are calculated by number based collection efficiency. The result showed that the rotation angle of the vane plays major roll to the pressure drop. But the smaller rotation angle of vane causes particle collection efficiency difference with different inlet position.

  • PDF

Test Method for Particle Removal Characteristic of Equipment Fan Filter Unit (EFFU) (Equipment Fan Filter Unit (EFFU)의 Particle 제거 성능평가 방법)

  • Lee, Yang-Woo;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.59-62
    • /
    • 2012
  • This test method covers a procedure for measuring particle removal characteristic of equipment fan filter unit(EFFU) installed inside of semiconductor process equipments, FPD manufacturing equipments and so on. Since EFFU is a combination of air filter and the assembly of fan, motor and frame, the integrity of these parts is very important for the performance of EFFU. So a conventional particle removal test method for air filters is not suitable for EFFU particle removal performance. This test method defines an evaluation method for EFFU which is installed inside an enclosed space to remove particles that are generated inside process equipment. The particle removal performance of EFFUs is usually depending on the performance of filter media and air flow rate. To understand a performance of an EFFU, the filter media characteristic, air flow rate and the integrity of EFFU parts should be considered simultaneously. This test method is intended to demonstrate the system performance of an EFFU and successfully evaluated EFFU performance characteristics.

A Study on the Grade Efficiency of Sturtevant Type Air Classifier (스터테반트 공기분급기의 분리효율에 대한 연구)

  • 정인기;박시우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.773-781
    • /
    • 2004
  • This research was Performed to raise grade efficiency of Sturtevant type air classifier. to treat powder less than $74\mu\textrm{m}$ particle produced at the crushing process of the dry aggregates manufacturing system or concrete wastes recycling system. The experimental conditions were in the ranges. 0.85 to 5.15 $m^3$/s of primary air flow rate. 0.005 to 0.015 $m^3$/s of secondary air flow rate $30^{\circ}$ to $70^{\circ}$ of auxiliary blades angle. respectively. for 1.7~3.3 kg/min of the powder feed rate. It was found that the grade efficiency of the air classifier was increased as the baffle plate was attached at the expansion region. and the optimal operating conditions of the air flow rates and the blade angle were obtained. The fractional recovery curves from the experiments were well agreement with the theoretical one of Molerus model.

Analysis of performance test results of CA-certified air cleaners from 2003 to 2015 (2003년부터 2015년까지 CA 인증 공기청정기의 성능 시험 결과 분석)

  • Kim, Hak-Joon;Hong, Kee-Jung;Woo, Chang Gyu;Han, Bangwoo;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • In this study, the test results obtained from the performance tests for CA (Korea Association of Cleaning Air) certificated air cleaners which had been commercially available in Korea from 2003 to 2015 were analyzed. Among the test parameters such as flow rate, particle collection efficiency, clean air delivery rate (CADR), ozone emission, odor removal efficiency and noise level, noise level and CADR were correlated with flow rates. Collection and odor removal efficiencies were 20% higher than the limit of the CA certification. The ozone emissions from the air cleaners were negligible because all the air cleaners were equipped with only HEPA filters, not electrostatic precipitation method which produces ozone.

Development of Semicontinuous Measurement System of Ionic Species in PM2.5

  • Hong, Sang-Bum;Chang, Won-il;Kang, Chang-Hee;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1505-1515
    • /
    • 2009
  • A new method to semicontinuously determine $PM_{2.5}$ ionic species with a short time resolution is described in detail. In this system, a particle collection section (mixing part, particle collection chamber, and air/liquid separator) was developed. A Y-type connector was used to mix steam and an air sample. The particle collection chamber was constructed in the form of a helix coil and was cooled by a water circulation system. Particle size growth occurred due to the high relative humidity and water absorbed particles were efficiently collected in it. Liquid samples were drained out with a short residence time (0.08-0.1 s). The air/liquid separator was also newly designed to operate efficiently when the flow rate of the air sample was 16.7 L $min^{-1}$. For better performance, the system was optimized for particle collection efficiency with various types of test aerosols such as ($NH_4)_2SO_4,\;NaCl,\;NH_4HSO_4,\;and\;NH_4NO_3$. The particle collection efficiencies were almost 100% at different concentration levels in the range over 500 nm in diameter but 50-90% in the range of 50-500 nm under the following experimental conditions: 15 coil turns, a water flow rate for steam generation of 0.65 mL $min^{-1}$, and an air sample flow rate of 16.7 L $min^{-1}$. Finally, for atmospheric applications, chemical compositions of $PM_{2.5}$ were determined with a time resolution of 20 min on January 11-24, 2006 in Seoul, Korea, and the chemical characteristics of $PM_{2.5}$ ions were investigated.

Estimation on Affecting Factors and Contribution Rate for Air Permeability of Sawdust as Bulking Agent on Composting (퇴비화 첨가재인 톱밥의 공기투과성에 미치는 영향요인 및 기여도 평가에 관한 연구)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.52-62
    • /
    • 2015
  • This study estimated the contribution rates of inlet air flow, moisture content, air-filled porosity and particle size on the total pressure drop for the sawdust used as the bulking agent in the composting. The statistical model for pressure drop including the affecting factors was proposed.($R^2=0.998{\sim}0.950$) While the laminar air flow(v) and particle size(SIZE*v) had the positive relations to the total pressure drop, the turbulent air flow($v^2$), moisture content(MC*v) and air-filled porosity(AFP*v) had the negative relations. Total pressure drop sharply increased with increasing of the inlet air flow. And the most significant factors affecting to total pressure drop were the particle size(SIZE*v) as positive factor and air-filled porosity(AFP*v) as negative factor. The contribution rate to total pressure drop by the particle size(SIZE*v) was continuously increased with increasing of the inlet air flow, but the contribution rate by air-filled porosity(AFP*v) was decreased. And total pressure drop was little changed even though the increasing of moisture content above the range of dry moisture content 0.25. The contribution rates of affecting factors had the different tendencies with increasing of the moisture content, especially in the negative factors as air-filled porosity(AFP*v) and moisture content(MC*v). For effective composting process, it is preferable to select the sawdust with higher air-filled porosity as bulking agent to enhance the air permeability.

Development of mass aerosol particle generator and fabrication of commercial anti-viral air filter (대용량 입자 발생 장치 개발 및 이를 이용한 항바이러스 공조용 공기필터 제조)

  • Park, Dae Hoon;Joe, Yun Haeng;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.151-159
    • /
    • 2016
  • Since airborne viruses have been known to aggravate indoor air quality, studies on development of anti-viral air filter increase recently. In this study, a mass aerosol particle generator for coating a commercial air filter (over $300{\times}300mm^2$) was built, and evaluated by comparing a commercial particle generator. Then, via this device, a commercial air filter was coated with anti-viral material ($SiO_2-Ag$ nanoparticles in this study), so fabrication of commercial anti-viral air filter was performed and the pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. The result showed that the particle generation of the new generator was more than about 8.5 times over which of the commercial one. Consequently, $SiO_2-Ag$ particle coating on a filter does not have significant effects on the filtration efficiency and pressure drop with different areas, and the average anti-viral efficiency of the $SiO_2-Ag$ filter was about 92% when the coating areal density was $1.0{\times}10^{12}particles/m^2$.

A Diagnostic Technique for the Air Flow Characteristics in Refrigerators using PIV (PIV에 의한 냉장고 기류특성 평가방법)

  • Kim, Seok-Ro;Doh, Deog-Hee;Lee, Jae-Keun;Kim, Kyung-Chun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.576-584
    • /
    • 2007
  • A PIV(Particle Imaging Velocimetry) diagnostic technique for the evaluation of the flow characteristics in refrigerator is introduced. Smoke particles of which density is small enough to follow up the air flow are used for visualization of the air flows in the refrigerators. A rectangular room model is tested for the verifications of the dignostic technique. By evaluating the turbulent intensity and the deviation value of the turbulent intensity distribution that were obtained from PIV results, an optimal ventilating condition is suggested. The constructed technique is used for the diagnostics on the flow of an actual refrigerator. It has experimentally proved that the present technique is able to evaluate the ventilation conditions of refrigerators.

  • PDF

An experiment of the particle deposition on a circular cylinder in a laminar flow (원관 주위 유하 액막에 의한 관 외벽에서의 입자 부착에 대한 실험)

  • 정종수;이윤표;정기만;박찬우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • An experimental study has been carried out in order to investigate on a particle deposition on a circular cylinder surface. The present study is focused on the particulate fouling occurring in a heat exchanger for a seawater desalinization, in a laminar flow over circular cylindrical tubes. The objective is to investigate how NaCl concentration influences the $SiO2$ particle deposition on the surface of a glass circular cylinder. The NaCl concentration was changed from 0 g/L to 40 g/L. As the experimental results of $SiO2$ particle which is deposited on the glass circular cylinder surface showed, particle deposition rate per unit time increases rapidly with the increase of NaCl concentration between 0 g/L and 15 g/L. After the maximum of particle deposition rate was found at the NaCl concentration of 15 g/L, particle deposition rate remains unchanged or decreases gradually with the NaCl concentration from 15 g/L to 40 g/L. Also the $SiO2$ deposition rate of particles does not have serious variations with the position at present glass surface.

  • PDF

Nano Particle Charging Characteristics of Aerosol Charge Neutralizers (에어로졸 중화기의 나노 입자 하전 특성)

  • Ji, Jun-Ho;Bae, Swi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1489-1497
    • /
    • 2003
  • Aerosol charge neutralizers with various radioactive sources have been used to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. Measurements of highly charged particles are needed in air cleaning devices, e.g. electrostatic precipitator, bag filter with a pre-charger, and electrical cyclone. In this study, the particle charging characteristics of two different aerosol charge neutralizers were experimentally investigated for singly charged monodisperse particles and highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0,5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.2 to 2.5 L/min. The results show that the charge distribution of singly charged monodisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer is well agreed with the Boltzmann equilibrium charge distribution at an air flow rate of 0.3 L/min, However, it deviates from the equilibrium charge distribution when the air flow rates are 0.6, 1,0, and 1,5 L/min, On the other hands, the effect of air flow rate is insignificant for the $^{210}$ Po aerosol charge neutralizer. The non-equilibrium character in charge distribution of highly charged polydisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer greatly depends on the air flow rate, however it is insensitive to the air flow rate for the $^{210}$ Po aerosol charge neutralizer.