• Title/Summary/Keyword: Air-ocean interaction

Search Result 67, Processing Time 0.022 seconds

ACCURATE ESTIMATION OF GLOBAL LATENT HEAT FLUX USING MULTI-SATELLITE DATA

  • Tomita Hiroyuki;Kubota Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.14-17
    • /
    • 2005
  • Global latent heat flux data sets are crucial for many studies such as those related to air-sea interaction and climate variation. Currently, various global latent heat flux data sets are constructed using satellite data. Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO) includes one of the satellite-derived global latent heat flux data (Kubota et aI., 2000). In this study, we review future development of J-OFURO global latent heat flux data set. In particular, we investigate usage of multi-satellite data for estimating accurate global latent heat flux. Accurate estimation of surface wind speeds over the global ocean is one of key factors for the improved estimation of global latent heat flux. First, we demonstrate improvement of daily wind speed estimation using multi-satellites data from microwave radiometers and scatterometers such as DMSP/SSMI, ERS/AMI, QuikSCAT/SeaWinds, AqualAMSR-E, ADEOS2/AMSR etc. Next, we demonstrate improvement of global latent heat flux estimation using the wind speed data derived from multi-satellite data.

  • PDF

Tower-based Flux Measurement Using the Eddy Covariance Method at Ieodo Ocean Research Station (이어도해양과학기지에서의 에디 공분산 방법을 이용한 플럭스 관측)

  • Lee, Hee-Choon;Lee, Bang-Yong;Kim, Joon;Shim, Jae-Seol
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • Surface energy and $CO_2$ fluxes have been measured over an ocean at Ieodo Ocean Research Station of KORDI since May 2003. Eddy covariance technique, which is a direct flux measurement, is used to quantitatively understand the interaction between the ocean surface and the atmospheric boundary layer. Although fluxes were continuously measured during the period from May 2003 to February 2004, the quality control of these data yielded <20% of data retrieval. The atmospheric stability did not show any distinct dirunal patterns and remained near-neutral to stable from May to June but mostly unstable during fall and winter in 2003. Sensible heat flux showed a good correlation with the difference between the sea water temperature and the air temperature. The maximum fluxes of sensible heat and latent heat were $120Wm^{-2}$ and $350Wm^{-2}$ respectively, with an averaged Bowen ratio of 0.2. The ocean around the tower absorbed $CO_2$ from the atmosphere and the uptake rates showed seasonal variations. Based our preliminary results, the daytime $CO_2$ flux was steady with an average of $-0.1 mgCO_2m^{-2}s^{-1}$ in summer and increased in winter. The nighttime $CO_2$ uptake was greater and fluctuating, reaching up to $-0.1 mgCO_2m^{-2}s^{-1}$ but these data require further examination due to weak turbulent mixing at nighttime. The magnitude of $CO_2$ flux was positively correlated with the half hourly changes in horizontal mean wind speed. Due to the paucity of quality data, further data collection is needed for more detailed analyses and interpretation.

Impacts of Ocean Currents on the South Indian Ocean Extratropical Storm Track through the Relative Wind Effect

  • Hyodae Seo;Hajoon Song;Larry W. O'Neill;Matthew R. Mazloff;Bruce D. Cornuelle
    • Journal of Climate Change Research
    • /
    • v.34 no.22
    • /
    • pp.9093-9113
    • /
    • 2021
  • This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.

Numerical study on the interaction between a free surface and a propeller (자유수면과 프로펠러의 상호작용에 관한 수치적 연구)

  • Park, Il-Ryong;Park, Dong-Woo;Lee, Sang Bong;Paik, Kwang-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • The results of a numerical study on the performance of a propeller operating near a free surface are presented in this paper. The simulations are verified through comparison with experimental data, which was performed in a circulating water channel. The propeller performance as a function of the submerged depth was investigated. The effect of the propeller advance ratio on the wave patterns, flow structures around propeller, and thrust and torque of the propeller was also studied. Air ventilation was not observed for low advance coefficients. However, the simulations showed that wave pattern was strongly related to the tip vortex strength and inflow velocity. When air ventilation does not occur, the deduction of propeller thrust and torque increase for high advance coefficients.

Numerical Simulation of Tsunami Force Acting on Onshore Bridge (for Tsunami Bore) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(단파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.46-61
    • /
    • 2017
  • In the present work, the interaction analysis between tsunami bore and onshore bridge is approached by a numerical method, where the tsunami bore is generated by difference of upstream side and downstream side water levels. Numerical simulation in this paper was carried out by TWOPM-3D(three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. In order to verify the applicability of force acting on an onshore bridge, numerical results and experimental results were compared and analyzed. From this, we discussed the characteristics of horizontal force and vertical force(uplift force and downward force) changes including water level and velocity change due to the tsunami bore strength, water depth, onshore bridge form and number of girder. Furthermore, It was revealed that the entrained air in the fluid flow highly affected the vertical force.

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.

Micro-Surface-Cracks Behavior of 304 Stainless Steel Under Creep-Fatigue Interaction at Elevated Temperature (고온하 304 스테인리스강의 크리프-피로상호작용하의 미소표면균열에 관한 파괴거동)

  • 서창민;이상돈;조일현
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 1988
  • This paper deals with the micro-surface-cracks behavior on the unnotched smooth specimens of Type 304 stainless steel at $593^{\circ}C$ in air under creep and creep-fatigue conditions that have 10 mim and 1 min load holding times respectively. The behaviors of the micro-surface-cracks have been visualized by means of surface replica method and optical micro-photography. The quantitative characteristics of initiation, growth and coalescence of micro-surface-cracks have been investigated by observing and measuring the crack growth behaviors. some of the important results are as follows: Main crack initiates at grain boundary in the early stage(10 to 20%)of its life time and grows through coalescence and finally leads to fracture. The distribution of micro-surface-crack length, 2a, can be plotted against the composite Weibull distribution. The growth rate of the main crack can be plotted against the stress intensity factor, crack tip opering displacement and J integral.

  • PDF

Latent Heat Flux over the Global Ocean

  • Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.644-648
    • /
    • 2002
  • Though it was difficult of globally monitor latent heat flux aver the ocean for many years, the situation is rapidly changing by the use of satellite data. Since a bulk formula is used to estimate turbulent heat flux using satellite data, we need wind speed, sea surface temperature and specific humidity data. However, it is not easy to accurately estimate specific humidity using satellite data. Now several algorithms for estimating specific humidity have been proposed and applied to construct latent heat flux data sets. Latent heat flux data sets derived from satellite data such as J-OFURO, HOAPS and GSSTF are available at present. Since the algorithm and used satellite data are not the same between them. the characteristics of each data set may be different. Therefore, it is important to clarify the difference between each data set and investigate the cause of the difference in latent heat flux estimates. In this paper we summarize the present state of the art with regard to the turbulent heat flux estimation by using satellite data. Also we present the comparison results of latent heat flux fields including not only satellite-derived flux fields but also analysis fields.

  • PDF