• Title/Summary/Keyword: Air-liquid 2phase

Search Result 220, Processing Time 0.03 seconds

Experimental study on the flow characteristic by the co-polymer A6l1P additive in gas-liquid two-phase vertical up flow (합성 고분자물질 A611P를 첨가한 기액 2상 수직상향의 유동특성에 관한 실험적 연구)

  • 차경옥;김재근;양회준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • Two-phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and the liquid transportation system. The particular flow pattern depends on the conditions of pressure, flow velocity, and channel geometry. However, the research on drag reduction in two-phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction and void fraction by polymer addition in the two-phase flow system. We find that the polymer solution changes the characteristic of two-phase flow. The peak position of local void friction moves from tile wall of the pipe to the center of the pipe when polymer concentration increase. And then we predict that it is closely related with the frau reduction.

  • PDF

Computer Simulation of Liquid-Fuelled Combustor in Hot Vitiated-Air Stream (고온.저산소 농도영역중의 분무연소해석)

  • 김태한;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3187-3195
    • /
    • 1993
  • Combustion of liquid-fuelled combustion in a high-temperature vitiated-air stream was studied. The mathematical formulation comprise the application of Eulerian conservation equation to the gas phase and Lagrangian equation of droplet motion. The latter is coupled with a droplet-tracking technique (PSI-CELL Model) which regard the droplet phase as a source of mass, momentum, and energy to the gaseous phase. Reaction rate is determined by taking into account the Arrhenius reaction rate based on a single-step reaction mechanism. The calculated profiles show somewhat uncertainess at the upstream, but bases data for designing the combustor followed by 2-phase flow were obtained.

Experimental and Numerical Study on Characteristics of Air-assisted Spray and Spray Flames (2유체 분무의 연소특성에 관한 실험 및 수치 해석적 연구)

  • Kim, Dong-Il;Oh, Sang-Huen
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.51-63
    • /
    • 1998
  • Air-assisted atomizer flames are investigated numerically to study spray structures in nonburning and burning conditions based on experimental data. A PDA is used to measure droplet size, velocity, and number density for both nonburning and burning spray. Computations utilize time-averaged gas-phase equations and $k-{\varepsilon}$ turbulence model for simplicity. The major features of the liquid-phase model are that a SSF approach is used to represent the effect of gas-phase turbulence on droplet trajectories and vaporization, an infinite-diffusion model is employed to represent the transient liquid-phase process. Computation and experiment results show that the droplet acceleration and evaporation proceed quickly in near the atomizer, characterizing high number densities and a strong convective effect. The primary combustion zone, however, is dorminated by the gas phase reaction and exhibits a sheath combustion.

  • PDF

Void Fraction and Pressure Gradient of Countercurrent Two-Phase Flow in Narrow Rectangular Channels (협소 사각유로에서 대향류 2상유동의 기공률과 압력구배)

  • 김병주;정은수;손병후
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been performed. The void fraction and the pressure gradient were investigated using air and water in 760 mm long, 100 mm wide. vertical test sections with 2, 3 and 5 mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.08 and 0 to 2.5 m/s ranges. respectively. the experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be in good agreements. However the quantitative discrepancies were hardly neglected. as the superficial gas velocities increased, the void fraction increased and the pressure gradient decreased, where the effects of the liquid superficial velocities were infinitesimal. as the gap width of the rectangular channel increased the void fraction and the 2-phase frictional pressure gradient approached those values for the round tubes. Equi-periphery diameter, rather than the hydraulic diameter, seemed to be more effective in the analysis of two-phase flow behavior.

  • PDF

Evaluation on Efficiency of VOC Removal in Groundwater Using Diffused Aeration System (Diffused Aeration System을 이용한 지하수 내 VOC 제거 효율성 평가)

  • Seo, Minwoo;Suk, Heejun;Choi, Doohyoung;Kim, Jinhoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.31-37
    • /
    • 2008
  • Diffused Aeration System (DAS) is one of the remediation methods used for removing contaminants in groundwater and this method brings air bubbles in contact with contaminated water, afterwards transferring contaminants in liquid phase into air phase. In this study, three applicability tests using DAS were conducted in two highly contaminated sites. For these tests, diffused air bubbles are generated with a in-flow rate of 17.1, 44.8 and 76.5 (1/min), respectively. The concentrations of TCE in grounwater and air phase were measured during the tests. The measured results showed that TCE concentration hit the highest value after 6~8 min and afterwards decreased gradually. Also, it was observed that the TCE concentration in air phase changed depending on the rate of diffused aeration. In addition, $K_La$ values from liquid to air phase were calculated based on the test results and those of three tests (test 1, 2 3) were 0.444, 1.158 and 1.836(1/hr), respectively. From the comparison of $K_La$ values, the faster air in-flow rate is, the higher the efficiency of the DAS is.

  • PDF

The Effect of Header and Channel Angle Variation on Two-Phase Flow Distribution at Multiple Junctions (헤더-채널 분기관의 각도변화가 2상 유동 분배에 미치는 영향에 대한 연구)

  • Lee, Jun Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.559-566
    • /
    • 2015
  • The main objective of this work is to experimentally investigate the effect of angle variation on the distribution of two-phase flow at header-channel junctions. The cross-sections of the header and the channels were fixed at $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Air and water were used as the test fluids. Four different header-channel positions were tested : Vertical header with Horizontal channels (case VM-HC), Horizontal header with Horizontal channels (case HM-HC), Horizontal header with Vertical Downward channels (case HM-VDC), and Horizontal header with Vertical Upward channels (case HM-VUC). In all cases, liquid flow distribution tended to decrease gradually in the upstream header region. However, in the downstream region, different trends could be seen. The reason for these different tendencies were identified by flow visualization in each case. The standard deviations for the liquid and gas flow distribution in each case were calculated, and the case of VM-HC had the lowest values compared to other cases because of the symmetrically distributed liquid film and strong flow recirculation near the end plate.

Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

Effect of Various Shapes of Mixer Geometry on Two-Phase Flow Patterns in a Micro-Channel (마이크로 채널 내 혼합부 형상이 2상 유동 양식에 미치는 영향에 대한 연구)

  • Lee, Kwan Geun;Lee, Jun Kyoung;Park, Taehyun;Kim, Gyo Nam;Park, Eun Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The effect of inlet mixer geometries on the two-phase flow patterns in square micro-channel with $600{\times}600{\mu}m$ was investigated experimentally in this paper. The 4 different mixer configurations based on the Y, Impacting, and two T types (gas and liquid inlets were switched) were used. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~10 m/s and 0.1~100 m/s, respectively. Several distinctive flow patterns, namely, annular, slug-annular, slug, slug-bubbly, bubbly, and churn flow could be seen. The flow pattern maps for each mixer were suggested, and it can be concluded that two-phase flow patterns are not very sensitive to the mixer geometries. But the mixing behaviors of gas and liquid for each mixer were different for slug and bubbly flow. Thus, the characteristics of slug and bubble for each case were not same.

An Experimental Study of Vapor-Liquid Equilibrium for HFC12S+Propane Refrigerant Mixtures (HFC125+Propane 혼합냉매의 기-액 평형에 관한 실험적 연구)

  • 강준원;박영무;유재석;이종화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.563-571
    • /
    • 2003
  • The forty vapor-liquid equilibrium data of the binary system, HFC125+Propane, were measured between 273.15 and 313.15 K at 10 K interval and the composition range 0.2∼0.75, respectively. Experiments were performed in a circulation type apparatus in which the vapor phase was forced through the liquid phase. The composition at equilibrium were mea-sured by gas chromatography, and its response was calibrated using gravimetrically prepared mixtures. Vapor-liquid equilibrium data were calculated by using CSD equation of state and compared with the experimental data.

Modeling of coupled liquid-gas-solid three-phase processes due to fluid injection

  • Zang, Yong-Ge;Sun, Dong-Mei;Feng, Ping;Stephan, Semprich
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 2017
  • A coupled liquid-gas-solid three-phase model, linking two numerical codes (TOUGH2/EOS3 and $FLAC^{3D}$), was firstly established and validated by simulating an in-situ air flow test in Essen. Then the coupled model was employed to investigate responses of multiphase flow and soil skeleton deformation to compressed air or freshwater injection using the same simulation conditions in an aquifer of Tianjin, China. The simulation results show that with injecting pressurized fluids, the vertical effective stress in some area decreases owing to the pore pressure increasing, an expansion of soil skeleton appears, and land uplift occurs due to support actions from lower deformed soils. After fluids injection stops, soil deformation decreases overall due to injecting fluids dissipating. With the same applied pressure, changes in multiphase flow and geo-mechanical deformation caused by compressed air injection are relatively greater than those by freshwater injection. Furthermore, the expansion of soil skeleton induced by compressed air injection transfers upward and laterally continuously with time, while during and after freshwater injection, this expansion reaches rapidly a quasi-steady state. These differences induced by two fluids injection are mainly because air could spread upward and laterally easily for its lower density and phase state transition appears for compressed air injection.