• Title/Summary/Keyword: Air-ejection

Search Result 39, Processing Time 0.023 seconds

THEORETICAL AND NUMERICAL STUDY ON SCAVENGE CHARACTERISTICS IN A SUBCHAMBER OP AN HCCI ENGINE (HCCI 엔진 부실내 소기특성에 대한 이론 및 수치해석적 연구)

  • Suh Y.K.;Heo H.S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.21-29
    • /
    • 2005
  • In this paper, we present the theoretical and numerical results of scavenge characteristics in a small subchamber of an HCCI(Homogeneous Charge Compression Ignition) engine. Two theoretical models are proposed in prediction of the scavenge time and the efficiency; one is the non-mixing model in which the input gas(CH4) and the existing gas(air) do not mix at all, and the other is the fully-mixed model in which the two gases are assumed to mix completely before ejection. Focus is also given to the effect on the scavenge performance of the size of the chamber outlet.

Improvement of Moldability for Ultra Thin-Wall Molding with Micro-Patterns (마이크로 패턴을 가진 초박육 사출성형의 성형성 개선)

  • Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.556-561
    • /
    • 2007
  • The rapid thermal response(RTR) molding is a novel process developed to raise the temperature of mold surface rapidly in the injection stage and then cool rapidly to the ejection temperature by air or water. The objectives of this paper are to investigate the effect of mold temperature, pressure and thickness of micro pattern molding and to provide a optimization of RTR injection molding for micro pattern from Moldflow simulation. Optimal minimum temperature and pressure was found without shortcut according to thickness. Filling percentage was influenced by glass transition temperature with the kinds of resin. Optimal temperature is slightly higher than glass transition temperature irrespectively of pressure, thickness, the kinds of resin in the micro pattern molding.

Combustion Characteristicsof Plasma JetIgnition for Different Swirl Velocity in a Constant Volume Vessel (정적 연소기내의 스월 속도 변화에 따른 플라즈마 제트 점화의 연소특성)

  • 김문헌;박정서;이주환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.75-83
    • /
    • 2001
  • This paper presents the evaluation of combustion characteristics of sing-hole plasma jet ignitions in comparison with conventional spark ignition for variable of swirl velocity. Plasma jet plugs are three types according to ejecting directions : center of chamber, positive and negative swirl flow direction. Experiments are carried out for equivalent ratio 1.0 of LPG-air mixture in a constant volume cylindrical vessel. Not only the flame propagation is photographed at intervals, but the pressure variation in the combustion chamber is also recorded throughout the entire combustion process. The results show that the plasma jet ignitions and spark ignition enhance the overall combustion rate by increasing the swirl velocity. The dependence of the combustion rate swirl velocity leade to the conclusion that the placma jet plug, which ejects plasma jet to the cwnter of combustion chamber is the most desirable ignitor than other plugs.

  • PDF

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

The effects of primary gas physical properties on the performance of annular injection type supersonic ejector (주유동 기체의 물리적 특성이 환형 분사 초음속 이젝터의 성능에 미치는 영향)

  • Jin, Jung-Kun;Kim, Se-Hoon;Park, Geun-Hong;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.68-75
    • /
    • 2005
  • The effects of the physical properties of primary flow on the performance of a supersonic ejector were investigated. Axisymmetric annular injection type supersonic ejector was used for the study of the effects of molecular weight and the specific heat at constant pressure on the ejection performance. Test gases include; air, $CO_{2}$, Ar, $C_{3}H_{8}$, and $CCl_{2}F_{2}$ for different values of gas properties. As the molecular weight and CP of the primary gas increase, the secondary flow pressure increases at the same primary stagnation pressure and this behavior results from the combined effects of molar specific heat or specific heat ratio.

Dependence of the peak fluxes of solar energetic particles on CME parameters and magnetic connectivity

  • Park, Jinhye;Moon, Yong-Jae;Lee, Harim;Kahler, S.W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.82.3-83
    • /
    • 2017
  • We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO, STEREO-A and/or B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angle between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of Parker spiral field. The main results are as follows. 1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multi-spacecraft is similar to that on 2D CME speed. 2) There is a positive correlation between SEP peak flux and 3D angular width from multi-spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. 3) There is a noticeable anti-correlation (r=-0.62) between SEP peak flux and separation angle. 4) The multiple regression method between SEP peak fluxes and CME parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  • PDF

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.

Numerical Study on the Reacting Flow Field abound Rectangular Cross Section Bluff Body (사각 둔각물체 주위의 반응유동장에 대한 수치적 연구)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-69
    • /
    • 2013
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to simulate an engine nacelle fire and to complement the previous experimental results of the bluff body stabilized flames. Fire Dynamic Simulator (FDS) based on the Direct Numerical Simulation (DNS) was employed to clarify the characteristics of reacting flow around bluff body. The overall reaction was considered and the constant for reaction was determined from flame extinction limits of experimental results. The air used atmosphere and the fuel used methane. For both fuel ejection configurations against an oxidizer stream, the flame stability and flame mode were affected mainly by vortex structure near bluff body. In the coflow configuration, air velocity at the flame extinction limit are increased with fuel velocity, which is comparable to the experiment results. Comparing with the isothermal flow field, the reacting flow produces a weak and small recirculation zone, which is result in the reductions of density and momentum due to temperature increase by reaction in the wake zone.

Pressure Recovery in a supersonic ejector of a high altitude testing chamber (초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.833-837
    • /
    • 2010
  • This study aims at finding an optimal exhaust diffuser design of a high altitude testing chamber for a low bypass turbofan engine (F404-402) with thrust pound force of 17,700 and air mass flow rate of 66kg/s ejecting at a speed of Mach 1.66. The final proposed ejector size has better pressure recovery characteristics and targets to reduce operational cost at engine performance testing. Conventional high altitude test chamber layout was adopted and first drawn in two dimensions using Autocad software so as to determine the gas path, the ejector frontal size was then determined from gas dynamics equations considering traditional gas ejection method where both the engine exhaust and cell cooling air are exhausted via the ejector. Modification to a smaller ejector with an alternative secondary cell cooling exhaust port was then performed and modelled in 3D using Solid Works software.

  • PDF

An Experimental Study on the Spray Characteristics of a Rotating Fuel Nozzle of a Slinger Combustor for Different Flow Rates and Rotating Speeds (슬링거 연소기 회전연료노즐의 유량과 회전수에 따른 분무특성에 대한 실험적 연구)

  • Shim, Hyeon-Seok;Bae, Jonggeun;Kim, Jupyoung;Kim, Shaun;Kim, Donghyun;Ryu, Gyongwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.59-70
    • /
    • 2021
  • An experimental study was conducted to observe the spray characteristics for different flow rates and rotating speeds of a rotating fuel nozzle of a slinger combustor. The water spray ejected from the nozzle orifice was visualized using a high-speed camera and a light source. It was confirmed that the atomization was improved, as the flow rate decreased and rotating speed increased. The characteristic maps for the spray characteristics and performance parameters showed that the aerodynamic Weber number and the liquid-air momentum flux ratio were associated with the liquid primary breakup, and the liquid-air momentum flux ratio and Rossby number were closely correlated with the liquid ejection mode.