• Title/Summary/Keyword: Air-drying time

Search Result 328, Processing Time 0.026 seconds

Simulation of Natural Air Drying of Barley -Comparison of Experimental and Simulated Results- (보리의 상온 통풍건조 시뮬레이션(I) -실험치와 예측치의 비교-)

  • Keum, D.H.;Yi, S.D.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 1990
  • Four models in current use for cereal grain drying, equilibrium model, Morey model, partial differential equation model and simplified partial differential equation model, were modified to be suitable for natural air drying of barley. The predicted by the four models and experimental results were compared. Three models except equilibrium model predicted moisture comtent and grain temperature very well. But equilibrium model overpredicted moisture content and grain temperature of bottom layer. The degree of prediction of the four models for relative humidities of exhaust air didn't differ much from one another and equally the four models predicted relative humidity statisfatorily. Morey model took much shorter computing time than any other models. Therefore, considering the degree of prediction and computing time Morey model was the most suitable for natural air drying of barley.

  • PDF

Study in the Mixed Cooling Dryer Experiment (복합형 냉풍건조기 실험에 대한 검토)

  • Choi, Jin-Young;Kim, Se-Hwan;Park, Seung-Tae;Lee, Jong-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.254-259
    • /
    • 2009
  • The mixed cooling dryer has been developed significantly by adopting both advantages of cooling dryers and desiccant dryers. In this study, it is introduced that the desired effect, such as drying rate period reduction and energy-saving, could be achieved only by adding the desiccant dryer if an existing cooling dryer is used. The experiment should be conducted for quite long time due to the material selection, so it is regrettable that there are not enough data.

  • PDF

Feasibility Study for Applying Desiccant to Low Temperature Vacuum Drying Process (저온진공건조 공정에 제습제 적용을 위한 타당성 연구)

  • Sim, Yeonho;Kang, Jisu;Byun, Siye;Chang, Young Soo;Kang, Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.208-215
    • /
    • 2016
  • This study was conducted to improve the performance of low-temperature vacuum dryer by applying desiccant to cold trap. Performance evaluation was carried out using several desiccants. The amounts of absorption and diffusivity were measured based on analytic model. Results of desiccant performance evaluation revealed that silica-gel had the most excellent performance for conditions of low-temperature vacuum drying process. Silica-gel was applied to cold trap for evaluating the drying performance. The experiment results showed that the drying time was extended as the thickness of sample was increased due to increased heat and mass transfer resistance of drying sample. In addition, as heating plate temperature was increased, drying time was decreased due to increased evaporation pressure of drying sample. Furthermore, drying time with desiccant was decreased approximately 20% than that without desiccant.

Study on the Estimation of Drying Time of Biomass : 1. Larch Wood Chip

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.186-195
    • /
    • 2015
  • This study aims at modeling the rotary drying of wood chips in co-current mode and estimating the drying time of larch (Larix kaemferi) wood chip. Drying data were obtained in a lab. scale fixed bed dryer operating with an air velocity of 1 m/sec. and at hot air inlet temperatures of $100^{\circ}C$, $200^{\circ}C$, and $300^{\circ}C$. The lab. scale fixed-bed drying rates for small, medium and large size larch wood chips that had been dried from 40% wet-based moisture content (MC) to 10% MC at $200^{\circ}C$ drying temperature were 17.3 %/min., 10.2 %/min. and 5.5 %/min., respectively. It was predicted that larch large size wood chips could be dried from 40% MC to 10% MC in about 23.0, 34.6, and 44.7 minutes at $300^{\circ}C$, $200^{\circ}C$ and $150^{\circ}C$, respectively. Expected drying times for medium size chips were about 8.6, 11.2 and 13.2 minutes and those for small size chips were 4.3, 5.5 and 6.4 minutes, respectively.

A Study for the Use of Solar Energy for Agricultural Industry - Solar Drying System Using Evacuated Tubular Solar Collector and Auxiliary Heater -

  • Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: The objectives of this study were to construct the solar drying system with evacuated tubular solar collector and to investigate its performance in comparison with indoor and outdoor dryings. Methods: Solar drying system was constructed with using CPC (compound parabolic concentrator) evacuated tubular solar collector. Solar drying system is mainly composed of evacuated tubular solar collector with CPC reflector, storage tank, water-to-air heat exchanger, auxiliary heater, and drying chamber. Performance test of solar drying system was conducted with drying of agricultural products such as sliced radish, potato, carrot, and oyster mushroom. Drying characteristics of agricultural products in solar drying system were compared with those of indoor and outdoor ones. Results: Solar drying system showed considerable effect on reducing the half drying time for all drying samples. However, outdoor drying was more effective than indoor drying on shortening the half drying time for all of drying samples. Solar drying system and outdoor drying for oyster mushroom showed the same half drying time. Conclusions: Oyster mushroom could be dried easily under outdoor drying until MR (Moisture Ratio) was reached to about 0.2. However, solar drying system showed great effect on drying for most samples compared with indoor and outdoor dryings, when MR was less than 0.5.

Effect of Different Brine Injection Levels on the Drying Characteristics and Physicochemical Properties of Beef Jerky

  • Kim, Dong Hyun;Shin, Dong-Min;Lee, Jung Hoon;Kim, Yea Ji;Han, Sung Gu
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.98-110
    • /
    • 2022
  • Meat jerky is a type of meat snack with a long shelf life, light weight, and unique sensory properties. However, meat jerky requires a long manufacturing time, resulting in high energy consumption. In this study, beef jerky was prepared by injecting different concentrations of brine at different hot-air drying times (0-800 min). When the brine injection levels were increased to 30%, the drying characteristics of beef jerky, such as drying time and effective moisture diffusivity, were significantly improved owing to the relatively high water content and the formation of porous structures. The physicochemical properties (e.g. meat color, porosity, shear force, and volatile basic nitrogen) of the beef jerky injected with 30% brine were improved owing to the shortened drying time. Scanning electron microscopy images showed that the beef jerky structure became porous and irregular during the brine injection process. Our novel processing technique for manufacturing beef jerky leads to improved quality characteristics and shortened drying times.

Effect of Osmotic Dehydration with Different Type of Agents on Hot-air Drying of Mangoes (당 삼투액을 달리한 삼투건조가 망고의 열풍건조에 미치는 영향)

  • Hyeonbin, Oh;Hyun-Jeong, Shim;Chae-wan, Baek;Hyun-Wook, Jang;Young, Hwang;Yong Sik, Cho
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.6
    • /
    • pp.426-434
    • /
    • 2022
  • In this study, the effect of osmotic drying conditions of mangoes on hot air drying was investigated. Four different osmotic agents of 60 Brix, such as S60, SM10, HF80, and SG25, were prepared. Mango slabs were osmotically dried with the agents at a ratio of 1:4 (w/w) for up to 8 hours. SG25 showed the lowest weight reduction and moisture loss during the process. As a result of hot-air drying, all samples showed a high correlation with the Page model (0.9761~0.9997), and the required drying time of all samples that were osmotically dried was reduced compared to the non-osmotically dried group. After hot-air drying, the pH value increased according to the drying temperature. The L, a, and b values and the total polyphenol content also decreased. Through this study, the possibility of osmotic drying was confirmed to increase the efficiency of hot air drying of mangoes, which is expected to contribute to the industrial use of domestic mangoes.

Drying Characteristics of Succinic acid using the Microwave (마이크로파를 이용한 호박산 건조 특성)

  • Kim, Ji Sun;Ryu, Young Bok;Kim, Myung Hwan;Hong, Seong-Soo;Lee, Man Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6023-6028
    • /
    • 2013
  • Recently, biodegradable polymers are gaining more and more attention due to international environmental issues. Succinic acid is synthesised by chemical process of hydrogenation. Succinic acid synthesized has certain amount water content. To remove the water contained in succinic acid is used generally by hot air drying process. But recently, microwave drying process having the advantage of shortening the drying time and uniform drying of product are gaining more attention. In this study, hot air drying and microwave drying efficiency were compared at drying process. In addition, we confirmed commercial applicability in microwave drying process of succinic acid. Microwave drying process has higher efficiency than 70% compared with hot air drying process at thickness of 1cm. Economic efficiency were compared through examination of power consumption for complete drying of succinic acid at microwave and hot air dyring.

Quality Optimization in Red Pepper Drying (고추건조에 있어서 품질 최적화)

  • Lee, Dong-Sun;Park, Mu-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.655-661
    • /
    • 1989
  • Optimal drying conditions consisting of air temperature and relative humidity were searched by the simulation-optimization technique for minimizing quality changes in red pepper drying. Optimized drying conditions were analysed in the viewpoint of quality change kinetics and effects of control variables on the state variables. Optimal drying conditions were nearly same in both cases for carotenoid maximization and browning minimization. In two staged optimized drying, relative humidity took a lower search limit of about 10%, and air temperature in the first stage was near the lower limit of $50^{\circ}C$ and in second stage increased to a higher temperature varying with total drying time and stage changing time. Response surface analysis of time invariable drying confirmed the location of the optimal point lying on the vertex of lower limit humidity and a lowest drying temperature which ensures to attain target moisture of 0.2g water/g dry solid. Two stage drying can attain the higher objective function of quality by 3-5% than time invariable drying for shorter total drying times.

  • PDF

Comparisons of Rates of Air Drying and Shed Drying for Chestnut and Paulownia Soundboards (밤나무와 오동나무 향판용재(響板用材)의 옥외(屋外) 옥내(屋內) 천연건조(天然乾燥) 속도(速度)의 비교(比較))

  • Jung, Hee-Suk;Yoo, Tae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.577-583
    • /
    • 1998
  • Chestnut and paulownia boards for the traditional musical instruments were air dried to compare moisture contents(MC), drying rates and drying times between the air drying for 70 days in a yard and the shed drying for 150 days in a closed shed when piled in early June. An average final MC and the drying rate of chestnut boards were 20.6 percent and 0.78%/day for the air drying, and 16.6 percent and 0.44%/day for the shed drying. An average final MC and the drying rate of paulownia boards were 16.7 percent and 1.53%/day for the air drying, and 13.5 percent and 0.77%/day for the shed drying. Drying rates of air-dried boards were nearly twice as high as those of shed-dried boards for both species. Air drying rates of chestnut and paulownia boards were very high and exhibited falling drying rate above the fiber saturation point(30%), and then decreased irregularly. However, shed drying rates of chestnut and paulownia boards were high and exhibited falling drying rate above 55 percent MC for chestnut boards and above 80 percent MC for paulownia boards, and then decreased irregularly.

  • PDF