• Title/Summary/Keyword: Air-cooled absorption chiller

Search Result 18, Processing Time 0.02 seconds

Influence of surfactant on heat transfer of air-cooled vertical absorber (공냉식 수직 흡수기의 열전달에 미치는 계면활성제의 영향)

  • 윤정인;권오경;문춘근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.740-748
    • /
    • 1999
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare inner surface, groove inner surface, corrugated inner surface and spring inserted inner surface tubes. The additive concentration was about 0.08 mass%. The heat transfer coefficient was measured as a function of film Reynolds number in the range of 20~200. Experiments were tarried out at higher cooling water temperature of $35^{\circ}C$ to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an inserted spring has the highest enhancement effect.

  • PDF

Numerical Analysis of Vertical Plate Absorber for Optimal Design

  • Yoon, Jung-In;Moon, Choon-Geun;Phan, Thanh-Tong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.252-262
    • /
    • 2004
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. which was considered to the change of refrigerant vapor pressure along the plate width direction. was developed to evaluate the compactness of plate absorber and supply basis data for optimal design of plate absorber. The effects of plate interval as well as the effect of capacity for one piece of plate absorber on plate absorber size such as plate height. plate heating area and plate absorber volume have been investigated. It is confirmed that there is exist an optimal plate interval minimizing plate absorber volume. And the smaller capacity for one piece of plate absorber. the smaller plate absorber volume is obtained.

Heat Transfer Performance of Various Tubes for an Air-cooled Absorber with Surfactant

  • Yoon, Jung-In;Kim, Eun-Pil;Moon, Choon-Geun;Kwon, Oh-Kyong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 2000
  • This research is concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes are a bare tube, a groove tube, a corrugated tube and a spring-inserted tube. The additive concentration is about 0.08 mass%. The heat transfer coefficient is measured as a function of the film Reynolds number in the range of 20~200. Experiments are carried out at higher cooling water temperature of $35^{\circ}C$to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results with and without surfactant are compared. The enhancement of heat transfer by Marangoni convection effect which is generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an spring-inserted has the enhancement effect.

  • PDF

An Experimental Study on Beat and Mass Transfer Characteristics of Helical Absorber (헬리컬 흡수기의 열ㆍ물질전달 특성에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 2004
  • In this study, heat and mass transfer characteristics of five components solution (LiBr+Lil+LiNO$_3$+LiCl+$H_2O$) which could be substituted for commonly used LiBr solution are tested using a helical absorber. The arrangement of helical-typed heat exchangers allows to make the system more compact as compared to conventional one. The effects of experimental parameters, such as the solution flow rate, cooling water, solution temperature, solution concentration and surfactant have been investigated in view of the heat and mass transfer. The results of the experiment of heat and mass transfer performance show that five components solution should have 2% higher concentration fur equal absorption capacity of LiBr solution. But considering that five components solution have higher solubility than LiBr solution about 4% high concentration, five components solution could be applied to a small sized water cooled or air cooled absorption chiller/heater. The increase of heat and mass transfer coefficient by surfactant addition is about 25∼30% and 23∼40% respectively.

The Characteristics of Cooling Performance on 7RT Ammonia Absorption System (7RT급 암모니아 흡수식 냉온수기의 냉방성능 특성)

  • Lee, Ho-Saeng;Jin, Byoung-Ju;Yoon, Jung-In;Hwang, Jun-Hyeon;Jin, Slm-Won;Kyung, Ick-Soo;Erickson, Donald C
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.433-438
    • /
    • 2009
  • Experimental results for performance characteristics of small $NH_3$ absorption chiller/ heater are presented. The apparatus consists of 7RT water-cooled absorption system, solution pump, boiler, cooling tower and peripheral devices. The effect of experimental parameters, such as refrigerant mass flow rate, solution mass flow rate and cooling water temperature have been investigated in view of the system performance. The capacity of each heat exchanger increased as refrigerant mass flow rate increased in cooling mode. Also, a cooling capacity increased as a strong solution mass flow rate increased. The cooling and heating COP show 0.5, 1.5 regardless of refrigerant mass flow rate, respectively. The results focus on the evaluation for performance characteristics of system with respect to variation of refrigerant mass flow rate under standard design conditions.

Thermal performance of solar cooling and hot water for the demonstration system (태양열 실증 시스템의 냉방 및 급탕 일일 열성능)

  • Lee, Ho;Kim, Sang-Jin;Joo, Hong-Jin;Kwak, Hee-Youl
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.564-569
    • /
    • 2007
  • This study describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about 350㎡ was heated and cooled with the solar system. The system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, subsidiary tank, absorption chiller, chiller storage tank, and cooling tower. The results of the experimental study indicated that the total solar energy gain as daily performance on a sunny day (August 25, 2007) with total daily radiation of $606\;W/m^2$ was 671 kWh, the collecting efficiency of 55%. In the case of supplies to heat source more than $83^{\circ}C$, cooling time operated by solar was driven 8.8 hours, cooling energy generated by solar system was 179 kWh and the solar cooling fraction was 79.2%, and hot water supplied with surplus heat source by the solar system was 201 kWh.

  • PDF

Enhancement of Heat and Mass Transfer by Insert Spring in a Vertical Absorber with Surfactant

  • Yoon, Jung-In;Choi, Kwang-Hwan;Moon, Choon-Geun;Sarker M.M.A;Kwon, Oh-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1239-1250
    • /
    • 2004
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes are a bare inner surface. a groove inner surface, a corrugated inner surface and a spring inserted inner surface tubes. The additive concentration was about 0.08 mass%. The heat transfer coefficient was measured as a function of the film Reynolds number in the range of 20~200. Experiments were carried out at higher cooling water temperature of $35^{\circ}C$ to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results were compared with and without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an inserted spring has the highest enhancement effect.