• Title/Summary/Keyword: Air-conditioner for automobile

Search Result 37, Processing Time 0.022 seconds

Development Trends of Refrigerant and Refrigerant Oil for Automotive Air-conditioner (차량용 에어컨에 사용되는 냉매 및 냉동기유의 기술 동향)

  • Lee, Daewoong;Hwang, Seungyong
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.206-214
    • /
    • 2019
  • This study investigates alternative refrigerants and refrigerant oils as well as the tendency of protecting the global environment in view of automobile air-conditioning systems. Since decades, the R12 refrigerant is not used in automobile air-conditioners because of the ozone depletion potential (ODP) problem, and for the last 20 years, the ODP-free R134a refrigerant is leading the new automotive air-conditioning market. However, owing to its high global warming potential (GWP), the R134a refrigerant use in automobile air-conditioning system is also prohibited by law, and alternative refrigerants with a low GWP need to be proposed. Therefore, recently, the application of R1234yf, R152a, or other alternative refrigerants has started worldwide. By contrast, natural refrigerant R744 was introduced in the market several years ago by VDA (Verband Der Automobilindustrie), which is a German association in the automotive industry. This study also deals with refrigerant oils. For a long time, polyalkylene glycol (PAG) oil has been traditionally used with automobile air-conditioners, and polyolester (POE) oil is suitable for HEV, PHEV, and EV air-conditioning systems, where it is used by the electrically driven compressor owing to its excellent electrical insulation properties. Finally, PAG is an excellent lubricant for all the R134a, R152a, R1234yf, and R744 refrigerants, and has the advantage that it can be applied rapidly to alternative refrigerant air-conditioning systems.

A Study on the Production of a Compressor Piston for an Automobile Air-Conditioner using Aluminum casting/Forging (알루미늄 주조/단조 공정을 이용한 자동차용 에어컨 컴프레서 피스톤의 생산에 관한 연구)

  • Lee, Sung-Mo;Wang, Shin-Il;Kim, Hyo-Ryang;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.53-59
    • /
    • 2000
  • In this study aluminum casting experiments are carried out to reduce the grain size of a cast preform and to spheriodize its dendritic structure by adding Ti+B and Zr and to modify flaked eutectic silicon by adding Sr, And a finite element simulation is performed to determine an optimal configuration of the cast preform to be used in forging of a compressor piston for an automobile air-conditioner. When 0.15% Ti+B Zr and 0.05% Sr are added respectively into the molten aluminum alloy the finest grain in casting of the preform is obtained. It is confirmed that the optimal configuration of the cast preform predicted by FEM simulation is very useful for forging the compressor piston. After forging the cast preform of the compressor piston. the microstructure and the hardness of the cast preform is compared with those of the cast/forged product.

  • PDF

Computer Simulation of Automobile Air-Conditioners (자동차 에어컨 컴퓨터 시뮬레이션)

  • Kim, H.J.;Jung, D.S.;Kim, C.B.;Kim, K.H.;Kang, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.240-253
    • /
    • 1996
  • The refrigeration cycle of automobile air-conditioners is simulated in an effort to provide a computational tool for optimum thermodynamic design. In the simulation, thermodynamic and heat transfer analysis was performed for the four major components : evaporator, condenser, compressor, and expansion valve. Effectiveness-NTU method was used for modeling both evaporator and condenser. The evaporator was divied into many subgrids and simultaneous cooling and dehumidifying analysis was performed for each grid to predict the performance accurately. Blance equations were used to model the compressor instead of using the compressor map. The performance of each component was checked against the measured data with CFC-12. Then, all the components were combined to yield the total system performance. Predicted cycle points were compared against the measured data with HFC-134a and the deviation was found to be less than 5% for all data. Finally, the system model was used to predict the performance of CFC-12 and HFC-134a for comparison. The results were very reasonable as compared to the trend deduced from the measured data.

  • PDF

Process Design and Improvement in Cold Forging Process of a Inner Pulley for Automobile Air Conditioner (자동차 냉방기용 풀리의 냉간 단조 공정 설계 및 개선에 관한 연구)

  • 정덕진;김기홍;박세군;김동진;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.23-33
    • /
    • 1996
  • Forging of an inner pulley for compressor clutch assembly of car air conditioner is investigated in this study. In cold forging of inner pulley, the design requirements are to keep the same height of the inner rib and the outer one, and to make uniform the hardness distribution in the forged product. Using the rigid-plastic finite element simulation, we design the optimal process conditions, which has a performing operation. The forged pulley is investigated by checking the hardness distribution and it is noted that the distribution has improved to be even and high enough for industrial application.

Process Design of Cold Forging for Automobile Air Conditioner Pulley using a Solid Billet (중실소재를 이용한 자동차 냉방기용 풀리의 냉간 단조 공정 설계)

  • 정덕진;김동진;김병민
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.329-337
    • /
    • 1997
  • Forging of an inner pulley for compressor clutch assembly of car air conditioner is investigated in this study. In cold forging of inner pulley, the design requirements are to keep the same height of the inner rib and the outer one, and to make uniform the hardness distribution in the forged product. Using the rigid-plastic finite element simulation. we design the optimal process conditions, which has a performing operation. Also the final product configuration of forging has to be designed again in view of the metal flow involved in the operation, derived from the finite element simulations. The forged pulley is investigated by checking the hardness distribution and it is noted that the distribution has improved to be even and high enough for industrial application.

  • PDF

A Study on the Characteristics an Azeotropic Mixture Combined with CF_{3}I and a Refrigerant for Air-Conditioner HFC-152a and HFC-152a

  • Lee, Jong-In;Kwon, Il-Wook;Ha, Ok-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.140-149
    • /
    • 2003
  • In these days, environmental concerns have been increased throughout the industry and community worldwide. To prevent the ozone depletion, ozone depletion potential of a refrigerant must be zero. Simultaneously, a refrigerant with low GWP (global warming potential) is very demanding to reduce green house effect. Chlorine-free HFC-l34a is a refrigerant widely used for automotive air-conditioning system because its destruction potential is ecologically zero. Although HFC-l34a has no ozone depletion potential, its global warming potential is so high that it is not considered as a perfect alternative refrigerant that is acceptable for long-term use. In this paper, experimental measurement has been carried out to analyze the performance characteristics of automotive air-conditioning system using HFC-152a, which has low GWP and zero ODP. Also mixed refrigerant that is composed of HFC-152a and $CF_3$ was applied to investigate an alternative possibility for the automotive air-conditioning system. As a result of this study, we could draw following conclusions; With respect to the variation of the rotational speed of compressor, outside air temperature and flow rate, the heat amount of evaporator and compressor and performance coefficient was varied.

Grinding Mechanism and Case Study on Double-Disc Grinding of Ferrous Sintered Material

  • Tanaka, Masaru;Yoshimoto, Akinori;Ohshita, Hideo;Hashimoto, Toshihiko
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.877-878
    • /
    • 2006
  • The sintered parts are mainly used for automobile industry, and a part of air conditioners. In automobile industry, the application range of sintered parts is very broad and use for a driving and a lubricating system. And air conditioner uses them for compressor. Grinding of compressor and pump parts is very difficult these days, because these parts use High hardness materials and require high precision grinding. Tool life has to be extended to decrease production cost. We analyzed processing mechanism and developed new grinding wheels for Double Disk Grinding. And, we introduce new truing technology that improved tool-life and precision.

  • PDF

P/M Aluminium Automobile Parts in Sumitomo Electric Ind. Ltd.

  • Akechi, Kiyoaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.5-5
    • /
    • 1997
  • Rapidly-solidified P/M aluminium alloys for automobile and home appliance industries were developed. Rapidly-solidification made it possible to refine microstructures and to expand the range of alloy composition. For example, Al-Si alloys containing transition metal have lower thermal expansion coefficient, more excellent wear resistance, higher strength, and better machinability than those of conventional aluminium alloys. Therefore, in Japan, the technologies on powder-extrusion and powder-forging of aluminium alloy powders are developed for fifteen years, and applied to several parts, such as cylinder liners of motor cycle engines, rotors and vanes of compressors for car air conditioner, oil pump rotor for racing car, and so on. In this presentation, applications for automobile are mentioned. In particular, cylinder liners made of particle-dispersed composites with fine alumina and graphite are in detail described.

  • PDF

Analysis of Misting Phenomenon in a Car (자동차 내부의 김 서림 현상에 관한 연구)

  • Kwak, Min-Kyoung;Kim, Jae-Hwan
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.109-114
    • /
    • 2007
  • The mist on the inside of an automobile windshield is not only uncomfortable but also very dangerous because it obstructs the driver's vision. However, the removal process of the mist has never been studied in detail. This study performed experiments analyzing the mechanism causes the mist in a car and investigated the appropriate removal process. The experiments were performed on two rainy days, 10 April 2006 and 26 May 2006, with temperature and relative humidity sensors of testo-175-H2 and DICKSON-TK500. We found a passenger increased water vapor by 0.2 g $min^{-1}$ through respiration and thereby relative humidity (RH) from 55% to 67% in 8 minutes. Even though RH was not saturated, misting occurred because the humid air contacted the colder surface of the window. To remove the mist, it is necessary to increase the temperature or inflow drier air in the car. Therefore, we expected that the heater would be more effective than air conditioner for this matter. However, the outcome was the other way around due to the structure of the heating and cooling system in the car. When the air-conditioner was on, colder and drier air was generated and flowed through the so-called evaporator. Droplets were produced in the evaporator due to cooling procedure. When the heater was on, the warm air evaporated the droplets and increased the water content in the air resulting in an increase of relative humidity. Consequently, the air conditioner is more effective than the heater to remove the mist.

The Technology of Complex Forming for Automobile Part with Flow Control (유동제어를 통한 자동차 부품의 복합 성형기술)

  • 이동주;김동진;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.06b
    • /
    • pp.185-194
    • /
    • 1999
  • This paper suggests the new techmology to control metal flow in order to reduce the number of preforming and machining for the cold forged product with complex geometry. This technology can be summarized the complex forming, which consists of bulk forming and sheet forming, and multi-action forging, which be preformed double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub which is part of air conditioner clutch. According to the result of this study, the relative velocity of mandrel and punch is primary process variable.

  • PDF