• 제목/요약/키워드: Air-cell

검색결과 1,530건 처리시간 0.025초

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon;Choi, Insoo;Lee, Chang-Ha;Han, Jonghee;Kim, Hyoung-Juhn;Cho, EunAe;Yoo, Sung Jong;Nam, Suk Woo;Lim, Tae-Hoon;Yoon, Jong Jin;Park, Sehkyu;Jang, Jong Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3475-3481
    • /
    • 2014
  • This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.

Simulink를 이용한 고분자 전해질 연료전지 시스템 시뮬레이션 (Polymer Electrolyte Fuel Cell Simulation Using Simulink)

  • 황남선;이호준;주병수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.109-112
    • /
    • 2007
  • In this paper, a mathematical modeling was developed to simulate 1kW class air cooled Polymer Electrolyte Membrane Fuel Cell(PEMFC) system. The proposed modeling was conducted under SIMULINK based environment. The model ing was developed based on the thermodynamic and chemical equilibrium. The objective is to design and implement the entire fuel cell system model ing including the system controller modeling. The fuel cell process and the control system modeling should have to be connected with each other simultaneously, therefore the two types of modeling influences each other when the system simulator run. The fuel cell modeling libraries are simulated using the SIMULINK under the thermodynamic and chemical equilibrium base. The PID controller application was designed and developed to test the process modeling and verify it. This the prototype development of the fuel cell system to design and test more complicate fuel cell systems, like the residential power generation system. The simulation results was compared to the real PEMFC system performance. We have achieved the reasonable accordance with the Lab test and the simulation results.

  • PDF

PEM 연료전지 자동차 적용을 위한 성능실험에 관한 기초연구 (A Basic Experimental Study on Performance of Proton Exchange Membrane Fuel Cell System for Vehicle)

  • 이현근;오병수;정귀성
    • 한국수소및신에너지학회논문집
    • /
    • 제11권3호
    • /
    • pp.137-147
    • /
    • 2000
  • 연료전지 응용분야에 대한 실험연구는 연료전지 성능향상 등의 기초연구와 더불어 매우 중요하며 차세대 동력원으로써 상용화되기 위해서는 이러한 연구가 함께 병행되어야 한다. 본 실험은 고분자 전해질형 연료전지(PEM Fuel Cell)의 시스템을 차량에 적용할 수 있도록 연료전지스택의 기본특성 및 rpm에 따른 축출력과 효율 특성을 알아 보았으며 자연대류 공기방식과 강제 공급방식간의 전압, 전류, 출력특성을 비교 분석하였다. 본 실험을 통해 자연대류방식의 경우 반응공기량의 제한으로 인하여 항상 전류한계 성향이 나타나는 것을 알 수 있었으며 강제공기 공급방식은 성능면에서 자연대류 공급방식보다 우수하였다. 이것은 자연대류 방식과는 달리 공기유량 및 속도의 증가로 인하여 공기가 공기극에서 원활히 반응하였기 때문이다. 축출력에 따른 효율변화는 조합시스템의 경우 축출력이 낮아질수록 연료전지 효율과 달리 현저히 감소하였으며 이는 모터가 효율이 낮은 범위에서 구동되었기 때문이다. 연료전지 자동차는 축출력과 스택의 효율을 고려한 운전이 이루어져야 하며 스택의 효율이 35%-45% 범위인 0.55-0.75V/cell에서 이루어져야한다.

  • PDF

연료전지/배터리 하이브리드 차량 개발 (Development of Fuel Cell/Battery Hybrid Vehicle)

  • 손영준;박구곤;임성대;엄석기;양태현;윤영기;이원용;김창수
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.103-110
    • /
    • 2005
  • Fuel cell systems are consisted of various parts, for example fuel cell stack, fuel supplier, electrical converters, controllers and so on. Each components of system should have appropriate specification for their applications as well as simplicity. Because thermal load can be managed simply by using fans without any water cooling system, the air-cooled PEMFC is widely used in sub kW and around 1kW systems. The performance of an air-cooled system is highly dependent on ambient temperature and humidity. In this paper, the air-cooled PEMFC systems are developed and investigated to study the operating characteristics in the aspect of the thermal and water coupled management by the control of the axial fans and compressors. Various experiments were also conducted to get the cell voltage distribution, the relative humidity of the reactant gas and the thermal management by axial cooling fans, which cannot be observed in single cell experiment. After then, as practical applications, portable fuel cell system and a hybrid electric cart were successfully integrated and operated by using this air-cooled stack.

  • PDF

밀폐된 공간 내 공랭식 PEMFC의 자연대류 열전달에 대한 실험적 연구 (An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure)

  • 이준식;김승곤;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.42-48
    • /
    • 2016
  • This study presents an experiment investigation on natural convection heat transfer of air-cooling Proton exchange membrane fuel cells (PEMFCs) in a enclosure system for unmanned aerial vehicles (UAVs). Considered are replacing fuel cell stack with Aluminum block for heat generating inside a enclosure chamber. The volume ratio of fuel cell stack and chamber for simulation to the actual size of aerial vehicle is 1 to 15. The parameters considered for experimental study are the environmental temperature range from $25^{\circ}C$ to $-60^{\circ}C$ and the block heat input of 10 W, 20 W and 30 W. Effect of the thermal conductivity of the block and power level on heat transfer in the chamber are investigated. Experimental results illustrate the temperature rise at various locations inside the chamber as dependent upon heat input of fuel cell stack and environmental temperature. From the results, dimensionless correlation in natural convection was proposed with Nusselt number and Rayleigh number for designing air-cooling PEMFC powered high altitude long endurance (HALE) UAV.

Synthesis of a new class of carbon nanomaterials by solution plasma processing for use as air cathodes in Li-Air batteries

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.833-837
    • /
    • 2015
  • Li-air batteries have a promising future for because of their high energy density, which could theoretically be equal to that of gasoline. However, substantial Li-air cell performance limitations exist, which are related to the air cathode. The cell discharge products are deposited on the surfaces of the porous carbon materials in the air electrode, which blocks oxygen from diffusing to the reaction sites. Hence, the real capacity of a Li-air battery is determined by the carbon air electrode, especially by the pore volume available for the deposition of the discharged products. In this study, a simple and fast method is reported for the large-scale synthesis of carbon nanoballs (CNBs) consisting of a highly mesoporous structure for Li-air battery cathodes. The CNBs were synthesized by the solution plasma process from benzene solution, without the need for a graphite electrode for carbon growth. The CNBs so formed were then annealed to improve their electrical conductivity. Structural characterization revealed that the CNBs exhibited both an pore structure and high conductivity.

Residential Solar Cell System by driving of High Efficiency Inverter

  • Kwak Dong-Kurl;Lee Hyun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.687-691
    • /
    • 2001
  • With today's global environmental and energy problems, high expectations exist for solar power generation to reduce carbon dioxide generated by the consumption of fossil fuels. On the other hand, power consumption in residential homes is increasing every year. Among the many household appliances, the power demand for air conditioners increases dramatically during the summer, particularly in the afternoons. As this pattern closely matches the output pattern of solar cells, it should be possible to combine a photovoltaic array with an air conditioner to decrease the energy consumption within the home. We have developed a residential solar-powered air conditioner that operates through a combination of photovoltaic array and commercial power. In this paper, the configuration and specification of the residential solar-powered system are described to a novel high efficiency inverter using a ZVCS boost converter. And the performance evaluations of the solar-powered air conditioner are examined by the analysis of a new tracking controller with a maximum power $P_{max}$ detection of solar cell.

  • PDF

횔체어 시트쿠션의 접촉 압력 평가에 관한 연구 (The Study on the Evaluation of Contact Pressure of Wheelchair Seat Cushion)

  • 강영식;양성환;조문선;신유민
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2010년도 춘계학술대회
    • /
    • pp.61-69
    • /
    • 2010
  • The users who use the wheelchair are confined to a wheelchair for a long time. Accordingly, the use of seat cushion for pressure distribution is very important in order to prevent a bedsore. Therefore, this paper provides useful information for design of seat cushion through statistical testing among nothing cushion, low cell type of air cushion, high cell type of air cushion, and jelly type of air cushion. It turned out that the jelly type and high cell type of air cushion have a serious effect on decision and design of seat cushion.

  • PDF

마그네슘/공기연료전지의 과도특성에 관한 연구 (Transient Characteristics of Mg/Air Fuel Cell)

  • 김용혁
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.210-215
    • /
    • 2016
  • The transient characteristics of the Mg/Air fuel cell were ascribed to the load current, electrolyte concentrations, air electrode area and electrode distance. It was found that transient phenomena occurred in the load current, which is due to activate of the oxidation and reduction reaction process. The transient time increase with the load current increase. The transient characteristics were investigated with regard to internal resistance. The maximum power output analysis was employed in order to explain the delayed action under various experimental conditions. The internal resistances had a significant effect on the transient characteristics. The transient curves thus obtained were in almost agreement with internal resistance characteristics.