• 제목/요약/키워드: Air-cell

검색결과 1,530건 처리시간 0.032초

연료 전지용 터보 익스펜더의 공기 포일 베어링에 대한 연구 (Study on the Air Foil Bearings of the Turbo-Expander for Fuel Cell System)

  • 이용복;박동진;김창호
    • Tribology and Lubricants
    • /
    • 제21권3호
    • /
    • pp.114-121
    • /
    • 2005
  • As fuel cell system is environmental friendly generator, its performance depends on its air supply system. Because, fuel cell stack generates electrical energy by electron and the electron is generated by reacting between air and hydrogen. So, more and more compressed air is supplied, more and more the energy can be obtained. In this study, turbo-expander supported by air foil bearing is introduced as the air supply system used by fuel cell systems. The turbo-expander is a turbo machine which operates at high speed, so air foil bearings suit its purpose for the bearing elements. Analysis for confirming the stability and endurance is conducted. Based on FDM and Newton-Raphson method, characteristics of air foil bearing, dynamic coefficients, pressure field and load capacity, are obtained. Using the characteristics of air foil bearing, the rotordynamic analysis is performed by finite element method. The analysis (stability analysis and critical speed map) shows that turbo-expander is stability at running speed. After the analysis, the test process and results are presented. The goals of test are running up to 90,000 RPM, flow rate of 150 $m^3/h$ and pressure ratio of 1.15. The test results show that the aerodynamic performance and stability of turbo-expander are satisfied to the primary goals.

80kW급 고분자 전해질 연료전지의 공기공급계(터보 블로워) 개발 (Development of air supply system(Turbo blower) for 80kW PEM fuel cell)

  • 이희섭;김창호;이용복
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.67-72
    • /
    • 2006
  • Blower as an air supply system is one of the most important BOP (Balance of Plant) system fur FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power and fuel cell demands a clean air. Considering the efficiency of whole FCV, low friction lubrication of high speed rotor is needed. For the purpose of reducing electrical power and supplying clean air to Fuel cell, oil-free air foil bearings are applied at the each side of brushless motor (BLDC) as journal bearings which diameter is 50mm. The normal power of driving motor has 1.7kW with the 30,000rpm operating range and the flow rate of air has maximum 160 SCFM. The impeller of blower was adopted a mixed type of centrifugal and axial which has several advantages for variable operating condition. The performance of turbo-blower and parameters of air foil bearings was investigated analytically and experimentally. From this study, the performance of the blower was confirmed to be suitable far 80kw PEM FC.

  • PDF

연료전지 내구성능 향상을 위한 공기차단밸브 개발 (Development of Air Cutoff Valve for Improving Durability of Fuel Cell)

  • 박정희;이창하;권혁률;김치명;최규성
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.49-55
    • /
    • 2015
  • In this study, among in various scenarios of the duration degradation of the fuel cell, countermeasures for the cathode carbon carrier oxidation and the deactivation of catalyst by hydrogen / air interface formation have been studied. so the system was applied to the air cutoff valve. In terms of the component, the cold start performance, electrical stability, the airtight performance were mainly designed and their performance was confirmed. And in terms of the system, the air electrode flow is blocked off, so the oxygen concentration drops when system is powered off, As a result, By reducing unit cell voltage which affect the durability of the fuel cell reached up to 0.8V, the improved durability of the fuel cell was confirmed.

마이크로 연료전지용 강제 호흡형 공기 공급 모듈에 관한 연구 (A Study on Forced Aspirating Air Supplying Module for Micro Fuel Cell)

  • 황준영;윤효진;이상호;강희석;강경태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.49-52
    • /
    • 2008
  • The present study conducts a series of experiments to develop a novel air supplying module for a micro fuel cell using piezoelectric linear actuator. An intermittently and operating air breathing module with reciprocating motion of the linear actuator has been suggested in the present study. A test bench for a micro fuel cell system has been constructed to estimate performance of the active fuel cell system using the air supplying module. With the stroke and operating duty as main control parameters, the optimal operating method of the air supplying module has been discussed.

  • PDF

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for FCEV Bus)

  • 박창호;조경석;김우준;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

고분자 전해질 연료 전지용 공기공급계의 동특성 및 성능에 대한 연구 (Study on Dynamic Characteristic & Performance of the Air Supply System for PEM Fuel Cell)

  • 이희섭;김창호;이용복
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.45-53
    • /
    • 2006
  • Turbo-blower as an air supply system is one of the most important BOP (Balance of Plant) systems for FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power, and fuel cell demands a clean air. In this study, turbo-blower supported by air foil bearings is introduced as the air supply system used by 80kW proton exchange membrane fuel systems. The turbo-blower is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. Analysis for confirming the stability and endurance is conducted. The rotordynamic stability was predicted using the numerical analysis of air foil bearings and it is verified through experimental works. In spite of various transient dynamic situation, the turbo-blower had stable performances. After the performance test, results are presented. The normal power of driving motor has about 1.6 kW with the 30,000 rpm operating range and the flow rate of air has maximum 160 SCFM. The test results show that the aerodymic performance and stability of turbo-blower are satisfied to the primary goals.

태양광발전 방식의 자동차용 과급 장치의 성능 평가 (Performance Test of Supercharger for Vehicle using Solar Cell)

  • 고광호
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.942-948
    • /
    • 2011
  • The performance of a supercharger for vehicle using solar cell attached on the exterior of a car, an auxiliary battery, and an air compressor was evaluated in this study. This supercharger is composed of a solar cell of 40W, a battery of 60 Ah, an air compressor of 17 A, 8 $kgf/cm^2$ and an air tank of 8L. It takes about 6 days to charge the battery with the solar cell and the high pressure air of 8L can be supplied about 70 times to engine intake with this battery. The intake pressure increased by about 20~40% with this supercharger. The vehicle power and accelerating performance are enhanced by 87% and 50% each in the low speed range. But the performance improved little in the high speed range because of the rather constant flow rate of air supplied by this type of supercharger.

OPTIMUM AIR PRESSURE FOR AN AIR-CELL SEAT TO ENHANCE RIDE COMFORT

  • YOO W. S.;PARK D. W.;KIM M. S.;HONG K. S.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.251-257
    • /
    • 2005
  • Several air cells are installed in the seat cushion to adjust the stiffness of seat by changing the air pressure. To select proper air pressure in the air cells, two kinds of tests are performed. For the pressure distribution on the seat, the maximum pressure and mean pressure are compared. And for the dynamic ride values, SEAT (Seat Effective Amplitude Transmissibility) values are calculated and compared. These experiments are carried out with three different drivers, three different vehicle speeds on the highway and two different speed on the primary road, and three different air pressures. From the real car tests, optimum air cell pressure depending on the vehicle speed and driver's weight are recommended.

연료전지용 베인 로타리 공기 압축기 설계 (Design of Vane Rotary Air Compressor for Fuel Cell Application)

  • 김현진;이용호;김호영
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.29-37
    • /
    • 2008
  • Air supply is required to the cathode of fuel cells for the provision of oxygen to produce electricity through chemical reaction with hydrogen in the cell, and supplied air should be free of impurities such as oil mist and tiny particles separated from sliding surfaces. Hence, air compressor for fuel cell air supply must be oil-less type and have no severe sliding surfaces inside. This paper introduces the concept of single-vane type rotary air compressor whose structure is particularly suitable for the fuel cell application: sliding action of the vane against the cylinder wall, which causes severe friction in the conventional vane rotary compressors, is made to be prevented by attaching the vane to the driving shaft with the compliant device between the vane and the rotor in this new design. For 2 kW fuel cell application, preliminary design has been carried out, and its performance has been estimated by using computer simulation program: for discharge pressure of 2 bar, the volumetric, adiabatic, and mechanical efficiencies are calculated to be 82.5%, 92.5%, and 96.3%, respectively.