• 제목/요약/키워드: Air-Water

Search Result 6,838, Processing Time 0.031 seconds

Prediction of Micro-Bubble Releasing Concentration with the Retention Time of a Micro-Bubble Generating Pump (미세기포 발생펌프 내 체류시간에 따른 미세기포의 발생 농도 예측)

  • Ambrosia, Matthew Stanley;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.829-837
    • /
    • 2016
  • The mechanism of micro-bubble generation with a pump is not clarified yet, so the design of water treatment systems with a micro-bubble generating pump is based on trial and error methods. This study tried to explain clearly quantitative relationships of experimental micro-bubble concentration ($C_{air}$) of continuous operation tests with a micro-bubble generating pump and theoretical air solubility. Operation parameters for the tests were discharge pressure ($P_g$), water ($Q_{w0}$) and air ($q_0$) flow rates, orifice diameter ($D_o$), and retention time (t). The experimental micro-bubble concentrations ($C_{air}$) at 4.8 atm of discharge pressure ($P_g$) were in the range of 21.04 to 25.29 mL/L. When the retention time (t) by changing the pipe line length ($L_p$) increased from 1.22 to 6.77s, the experimental micro-bubble concentrations ($C_{air}$) increased from 25.86 to 30.78 mL air/L water linearly. The dissolved and dispersed micro-bubble concentrations ($C_{air}$) are approximately 4 times more than the theoretical air solubility.

Efficiency of Removal of Indoor Pollutants by Pistia stratiotes, Eichhornia crassipes and Hydrocotyle umbellata

  • Park, Hye-Min;Lee, Ae-Kyung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, we compared efficiency of different aquatic plants in removing indoor pollutants and examined their potential to purify indoor air. Two liter of water in chamber was used as the control, while the other chambers containing water lettuce (Pistia stratiotes), water hyacinth (Eichhornia crassipes), and water coin (Hydrocotyle umbellata) were used as treatment groups. Temperatures inside all the chambers were maintained between 20 ℃ and 23 ℃. Humidity in the chambers with aquatic plants increased by 30% and 50% control respectively. The removal of formaldehyde per unit leaf area was examined in each aquatic plant. It turned out that water hyacinth removed the highest amount of formaldehyde, followed by water lettuce and water coin. Both water hyacinth and water lettuce increased the amount of removal of formaldehyde until the end of the experiment. In the case of airborne dust (PM 10) and fine dust (PM 2.5), water coin, which had the highest number of leaves, removed more PM 10 and PM 2.5 than the other aquatic plants, with statistically significant difference. In addition, both water coin and water hyacinth smoothly opened and closed stomata before and after the experiment. Consequently, as the aquatic plants were effective in controlling humidity and removing pollutants, they can be used as air purifying plants.

Application of Air Lift Pump for Sludge Discharger (공기 양정(air lift) 펌프를 응용한 슬러지 배출장치에 대한 연구)

  • Ahn Kab-Hwan;Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.929-938
    • /
    • 2004
  • Sludge discharger applied the principle of the air lift pump was investigated experimentally for the different design( diameter of discharge pipe, diameter and height of the inside and outside wall) and operating parameters(air flow rate, water level). And it was conducted that performance comparison about sludge discharger and conventional air lift pump. The result indicated that discharged liquid were increased with the increase of air flow rate and water level and decrease distance between inside and outside wall. The discharge pressure was increased with an increase of air flow rate and a decrease of the diameter of the discharge pipe, for both the sludge discharger and the airlift pump. The discharge pressures of the sludge discharger were 3-6 times higher than those of the air lift pump.

A fundamental study on ozone oxidation of humic substances (휴믹물질의 오존산화에 관한 기초연구)

  • 김은호;김영웅;손희종;장성호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.10-21
    • /
    • 1999
  • The purpose of study were to research the characteristics of water variation adding humic acids to distilled water after ozonation. Upon investigating pH variation with contact time after providing distilled water+air, distilled water+ozone and distilled water-humic acid-air in reactor, it reduced after 60 minute in inletting air and in spite of short contact time did suddenly in inletting ozone. TOC and UV-254 continued to increase with contact time of ozone and humic acids. $NH^{4+}-N$ did slowly increase or decrease after constant contact time of ozone, because $NH^{4+}-N$ was converted into $No^3-N$ by ozone. T-N did suddenly increase after 90minute, but T-P did rarely fluctuate for total experiment. Total 30 species of organic matter were detected by GS/MSD, but 14 species did really tend to increase except for matter identified in distilled water and blank test. Humic acids generated $aliphatic{\cdot}aromatic$ hydrocarbon, alcohol and amine etc., and did various matters without inflow course of contaminants.

  • PDF

A Flow Quantity Distribution Characteristics of the Hot Water Header for Individual Room Control System (실별제어 온수분배기의 유량분배 특성)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Flow quantity to supply to a coil in floor heating system is important to achieve comfortable indoor air condition in the winter season. The hot water header is used to distribute the water into the coil. Experimental study has been performed using the water header that have 5 branches consisted of flow control valves and automatic shut-off valves. Each branch line connected it with X-L pipe. Experimental tests accomplished it to investigate the flow distribution characteristics of the hot water header. Experimental results show that the selection of the pump head and differential pressure are very important to save running energy of the system, and high differential pressure needs more friction loss in the case of suitable differential pressure for balancing of the header.

Water Treatment Using DAF(Disssolved Air Flotation) (용존공기 부상법(Disssolved Air Flotation)을 이용한 정수처리)

  • Lee, Byoung-Ho;Kim, Jae Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 1996
  • Treatment efficiencies of water quality parameters such as $KMnO_4$ Demand, $UV_{254}$, Turbidity, and LAS(Linear Alkyl Sulfonate) were compared between DAF(Dissolved Air Flotation) and CGS(Conventional Gravitational Sedimentation). The experimental results showed that DAF is much more efficient in treatment of water quality parameters than CGS. The optimum pH was about 7, and optimum alum($Al_2(SO_4)_3$) dose was about 30 ppm for DAF treatment. Economic aspects were also analyzed for bath systems. Even though production cost per ton of drinking water is slightly higher in DAF than in CGS, it turned out that construction cost and land value of CGS far surpass the production cost. DAF system is superior in removal efficiency of impurities and in production cost as a whole to CGS system.

  • PDF

AIR ENTRAINMENT AND ENERGY DISSIPATION AT STEPPED DROP STRUCTURE

  • Kim Jin Hong
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.195-206
    • /
    • 2004
  • This paper deals with oxygen transfer by air entrainment and energy dissipations by flow characteristics at the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height. Dominant flow features included an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. Skimming flow occurred at larger flow rates with formation of recirculating vortices between the main flow and the step comers. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number. It was more related to the flow discharge than to the Froude number. Energy dissipations in both cases of nappe flow and skimming flow were proportional to the step height and were inversely proportional to the overflow depth, and were not proportional to the step slope. The stepped drop structure was found to be efficient for water treatment associated with substantial air entrainment and for energy dissipation.

  • PDF

Effect of Flow Inlet or Outlet Direction on Air-Water Two-Phase Distribution in a Parallel Flow Heat Exchanger Header

  • Kim, Nae-Hyun;Kim, Do-Young;Cho, Jin-Pyo;Kim, Jung-Oh;Park, Tae-Kyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.37-43
    • /
    • 2008
  • The air and water flow distributions are experimentally studied for a round header - ten flat tube configuration. Three different inlet orientation modes (parallel, normal, vertical) were investigated. Tests were conducted with downward flow configuration for the mass flux from 70 to $130kg/m^2s$, quality from 0.2 to 0.6, non-dimensional protrusion depth (h/D) from 0,0 to 0.5. It is shown that, for almost all the test conditions, vertical inlet yielded the best flow distribution, followed by normal and parallel inlet. Possible explanation is provided using flow visualization results.

A study on the counter-flow cooling tower performance analysis using NTU-method (NTU법을 이용한 대향류형 냉각탑의 성능해석에 관한 연구)

  • 김영수;서무교;이상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.598-604
    • /
    • 1999
  • The thermal performance of cooling towers is affected by the temperature of inlet water, wet bulb temperature of entering air add water-air flow rate. In this study, the effects of these variables are simulated using NTU-method and experimentally investigated for the counter-flow cooling towers. The simulation program to evaluate these variables which affect the performance of cooling tower was developed. The maximum errors between the results of simulations and experiments were 3.8% under the standard design conditions and 5.4% under the other conditions. The performance was increased up to 46~50% as the water loading was increased from $6.8m^3$/$hr\cdot m^2$ to $15.9m^3$/$hr\cdot m^2$. The range was reduced up to 56~42% when the wet bulb temperature of the entering air was increased from $22^{\circ}C\; to\; 29^{\circ}C.$

  • PDF